Browse > Article
http://dx.doi.org/10.5423/PPJ.2008.24.3.322

Antifungal Activity of Eucalyptus-Derived Phenolics Against Postharvest Pathogens of Kiwifruits  

Oh, Soon-Ok (Kunming Institute of Botany, Chinese Academy of Sciences)
Kim, Jung-A (Korean Lichen Research Institute)
Jeon, Hae-Sook (Korean Lichen Research Institute)
Park, Jong-Cheol (Department of Oriental Medicine Resources, Sunchon National University)
Koh, Young-Jin (Department of Plant Medicine, Sunchon National University)
Hur, Hyun (Department of Biology, Dongguk University)
Hur, Jae-Seoun (Korean Lichen Research Institute)
Publication Information
The Plant Pathology Journal / v.24, no.3, 2008 , pp. 322-327 More about this Journal
Abstract
Antifungal activities of natural substrances from Eucalyptus darlympleana, E. globules, E. gunnii and E. unigera were evaluated against postharvest pathogens of kiwifruits, Botrytis cinerea, Botryosphaeria dothidea, and Diaporthe actinidiae, to screen effective natural substances as an alternative to chemical fungicides. Methanol extract of the Eucalyptus trees showed strong antagonistic activity against the pathogenic fungi. Among them, E. unigera and E. darlympleana effectively inhibited mycelial growth of the pathogens. For chemical identification of the antifungal substances, the methanol extract of E. darlympleana leaves was successively partitioned with $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$. Among the fractions, $CH_2Cl_2$ and n-BuOH showed strong inhibitory activity of mycelial growth of the fungi. Five compounds were isolated from EtOAc and n-BuOH fractions subjected to $SiO_2$ column chromatography. Two phenolic compounds(gallic acid and 3,4-dihydroxybenzoic acid) and three flavonoid compounds(quercetin, quercetin-3-O-$\alpha$-L-rhamnoside, quercetin-3-O-$\beta$-glucoside) were identified by $^1H$-NMR and $^{13}C$-NMR spectroscopy. Among them, only gallic acid was found to be effective in mycelial growth and spore germination of B. cinerea at relatively high concentrations. The results suggest that gallic acid can be a safer and more acceptable alternative to current synthetic fungicides controlling soft rot decay of kiwifruit during postharvest storage.
Keywords
biofungicide; bioresource; natural substances; postharvest storage; soft rot decay;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Delaquis, P. J., Stanich, K., Girard, B. and Mazza, G. 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74:101-109   DOI   ScienceOn
2 Hur, J.-S., Ahn, S. Y., Koh, Y. J. and Lee, C. I. 2000. Antimicrobial properties of cold-tolerant Eucalyptus species against phyto-pathogenic fungi and food-borne bacterial pathogens. Plant Pathol. J. 16:286-289
3 Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001 First report of Diaporthe actinideae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Pathol. J. 110-113
4 Ramezani, H., Singh, H. P., Batish, D. R. and Kohli, R. K. 2002. Antifungal activity of the volatile oil of Eucalyptus citriodora. Eitoterapia 73:261-262
5 Regoli, F. and Winston, G. W. 1999. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol. Appl. Pharmacol. 156:96-105   DOI   ScienceOn
6 Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. and Bruni, R. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem. 91:621-632   DOI   ScienceOn
7 Schelz, Z., Molnar, J. and Hohmann, J. 2006. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77:279-285   DOI   ScienceOn
8 Yang, S. F. and Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35:155-189   DOI
9 Sharma, V. P. and Jandaik, C. L. 1995. Effect of some plant materials in controlling different moulds in Agaricus bisporus (Lange) Imbach. Indian J. Mycol. Plant Pathol. 24:183-185
10 Shukla, Y. N., Srivastava, A., Kumar, S. and Kumar, S. 1999. Phytotoxic and antimicrobial constitutes of Argyreia speciosa and Oenothera biennis. J. Ethnopharmacol. 67:241-245   DOI   ScienceOn
11 Bluma, R., Amaiden, M. R. and Etchverry, M. 2008. Screening of Argentine plant extracts: Impact on growth parameters and aflatoxin $B_1$ accumulation by Aspergillus section Flavi. Int. J. Food Microbiol. 122:114-125   DOI   ScienceOn
12 Pattnaik, S., Subramanyam, V. R. and Kole, C. 1996. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios. 86:237-246
13 Poole, P. R. and McLeod, L. C. 1992. Inhibition of Botrytis cinerea infection in kiwifruit tissues. Acta Hort. 297:159-164
14 Pyke, N. A., Manktelow, D., Elmer, P. and Tate, K. G. 1994. Post harvest dipping of kiwifruit iprodione to control stem end rot caused by Botrytis cinerea. Newzland. J. Crop Hortic. Sci. 22:81-86   DOI   ScienceOn
15 Bautista-Bauos, S., Long, P. G. and Ganesh, S. 1997. Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biol. Technol. 12:137-145   DOI   ScienceOn
16 Bisignano, G., Sanogo, R., Marino, A., Aqino, R., D'Angelo, V., German, O. M. P., De Pasquale, R. and Pizza, C. 2000. Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Lett. Appl. Microbiol. 30:105-108   DOI   ScienceOn
17 Ahn, Y.-J., Lee, H.-S., Oh, H.-S., Kim, H.-T. and Lee, Y.-H. 2005. Antifungal activity and mode of action of Galla rhois-derived phenolics against phytopathogenic fungi. Pest. Biochem. Physiol. 81:105-112   DOI   ScienceOn
18 Bautista-Bauos, S., Long, P. G. and Ganeshanandam, S. 1995. Physiological changes in kiwifruit during a curing period and incidence of Botrytis cinerea during storage. Acta Hort. 398:233-240
19 Rahman, M. M., Lopa, S. S., Sadik, G., Rashid, H.-O., Islam, R., Khondkar, P., Alam, A. H. M. K. and Rashid, M. 2005. Antibacterial and cytotoxic compounds from the bark of Conaga odorata. Fitoterpia 76:758-761   DOI   ScienceOn
20 Qadir, A., Hewett, E. W. and Long, P. G. 1997. Ethylene production by Botrytis cinerea. Postharvest Biol. Technol. 11:85-91   DOI   ScienceOn
21 Liu, Z., Ma, L., Zhou, B., Yang, L. and Liu, Z. L. 2000. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Physics Lipids. 106:53-63   DOI   ScienceOn
22 Niklis, N., Sfakiotakis, E. and Thanassoulopoulos, C. C. 1997. Ethylene production by Botrytis cinerea, kiwifruit and Botrytis rotted kiwifruit under several storage temperatures. Acta Hort. 444:733-737
23 Pak, H. A., Beever, R. E. and Laracy, E. P. 1990. Population dynamics of dicarboximide-resistant strains of Botrytis cinerea on grapevine in New Zealand. Plant Pathol. 39:501-509   DOI
24 Park, J. C., Park, J. G., Hur, J.-S., Choi, M. R., Yoo, E. J., Kim, S. H., Son, J. C. and Kim, M. S. 2004. Inhibitory effects of methanol extract, phenolic acids and flavonoids from the leaves of Eucalyptus darlympleana against 1,1-Diphenyl-2-picrylhydrazyl radical. Natual Product Sciences 10:244-247
25 Mehlhorn, H. and Wellburn, A. R. 1987. Stress ethylene determines plant sensitivity to ozone. Nature 327:417-418   DOI
26 Zhang, Y. and Lewis, K. 1997. Fabatins: new antimicrobial plant peptides. FEMS Microbiol. Lett. 149:59-64   DOI   ScienceOn
27 Cheah, L. H., de Silva, N., Irving, D. E., Hunt, A. W. and Tate, K. G. 1992. Hot water dips for control of Botrytis cinerea storage rot in kiwifruit. Acta Hort. 297:605-609