• 제목/요약/키워드: Galerkin integration

검색결과 86건 처리시간 0.022초

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권3E호
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

  • Crivellini, Andrea;Nigro, Alessandra;Colombo, Alessandro;Ghidoni, Antonio;Noventa, Gianmaria;Cimarelli, Andrea;Corsini, Roberto
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.59-72
    • /
    • 2022
  • In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).

준설토 유동해석을 위한 유한요소 수식화 (Numerical Formulation for Flow Analysis of Dredged Soil)

  • 신호성
    • 한국지반환경공학회 논문집
    • /
    • 제15권3호
    • /
    • pp.41-48
    • /
    • 2014
  • 준설토에 대한 연구는 주로 준설토의 1차원 침강 및 자중압밀 특성을 파악하는 실험적 연구가 진행되었다. 하지만 양질의 준설지반 확보를 위한 효과적인 투기장의 설계와 배출수에 의한 환경오염을 최소화하기 위해서는 준설토의 투기에 의한 유동특성의 체계적인 연구가 필요하다. 본 연구에서는 준설토 투기장의 펌핑에 의한 토사의 유동 형상을 모사하기 위하여 준설토사를 단일상으로 가정하고 연속 방정식을 유도하여 좌표축에 따른 힘 평형 방정식을 유도하였다. 준설토장의 3차원 거동 해석을 위한 컴퓨터 연산 부하와 모델링 소요시간을 최적화하기 위하여, 토체의 깊이 방향으로 적분을 수행하는 깊이 적분 방법을 지배 방정식에 적용하여, 3차원적 지형조건을 고려할 수 있도록 하였다. 지배 방정식의 보간함수를 이용한 공간분할에서 Petrov-Galerkin 수식화 기법을 적용하였다. 일반화된 사다리꼴 법칙으로 시간적분을 수행하고 Newton의 반복과정을 이용할 수 있도록 근사화시켰다. 가중행렬은 DG과 CDG 기법을 적용하였으며, 준설토 유동해석에서 가중행렬에 따른 수치적인 안정성을 평가하기 위하여 사각형 기둥 슬럼프 시뮬레이션을 수행하였다. 수치기법에 대한 비교 분석 결과는 DG 기법을 적용한 SU/PG 수식화가 유사진동을 최소화시키는 가장 안정적인 수치해석결과를 보여주는 것으로 나타났다.

회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구 (A Study on the Fracture Phenomena in Optical Disks Due to Increase of the Rotating Speed)

  • 조은형;좌성훈;정진태
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.437-442
    • /
    • 2001
  • In this study, the fracture phenomena of optical disks are discussed by theoretical and experimental approaches and then some recommendations are presented to prevent the fracture. Linear equations of motion are discretized by using the Galerkin approximation. From the discretized equations, the dynamic responses are computed by the generalized- time integration method. As a fracture criterion for optical disks, the critical crack length is presented. From experimental methods, the fracture procedure is analyzed. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks.

  • PDF

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

Element-free Galerkin 방법을 이용한 적응적 균열진전해석 (Adaptive Crack Propagation Analysis with the Element-free Galerkin Method)

  • 최창근;이계희;정흥진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.84-91
    • /
    • 2001
  • In this study, the adaptive analysis procedure of crack propagation based on the element-free Galerkin(EFG) method is presented. The adaptivity analysis in quasi-static crack propagation is achieved by adding and/or removing the node along the background integration cell that are refined or recovered according to the estimated error. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples. The results of these examples show the efficiency and accuracy of proposed scheme in crack propagation analysis.

  • PDF

기하학적 비선형과 이송 가속도를 갖는 전개하는 보의 동적해석 (Dynamic Analysis of a Deploying Beam with Geometric Non-Linearity and Translating Acceleration)

  • 송덕기;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.658-663
    • /
    • 2001
  • The dynamic response of an axially deploying beam is studied when the beam has geometric non-linearity and translating acceleration. Based upon the von Karman strain theory, the governing equations and the boundary conditions of a deploying beam are derived by using extended Hamilton's principle considering the longitudinal and transverse deflections. The equations of motion are discretized by using the Galerkin approximate method. From the discretized equations, the dynamic responses are computed by the Newmark time integration method.

  • PDF

Adaptive nodal generation with the element-free Galerkin method

  • Chung, Heung-Jin;Lee, Gye-Hee;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.635-650
    • /
    • 2000
  • In this paper, the adaptive nodal generation procedure based on the estimated local and global error in the element-free Galerkin (EFG) method is proposed. To investigate the possibility of h-type adaptivity of EFG method, a simple nodal refinement scheme is used. By adding new node along the background cell that is used in numerical integration, both of the local and global errors can be controlled adaptively. These errors are estimated by calculating the difference between the values of the projected stresses and original EFG stresses. The ultimate goal of this study is to develop the reliable nodal generator based on the local and global errors that is estimated posteriori. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated for several examples.

페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석 (The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis)

  • 조진래;이홍우
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.123-131
    • /
    • 2005
  • 기존의 부브노프-갤러킨 자연요소법(BG-NEM)에서 발생하는 수치적분의 부정확성을 페트로프-갤러킨 자연요소법(PG-NEM)에서 완벽히 해결할 수 있음을 저자들의 이전 논문에서 확인하였다. 본 논문에서는 PG-NEM을 확장하여 2차원 기하학적 비선형 문제를 다룬다. 해석을 위해 선형화된 토탈 라그랑지 정식화를 도입하고 PG-NEM을 적용하여 근사화한다. 각 하중 단계마다 절점은 새로운 위치로 갱신되며, 재분포된 절점을 바탕으로 형상함수를 새롭게 구성한다. 이러한 과정은 PG-NEM이 더 정확하고 안정적인 근사함수를 제공하는 것을 가능하게 한다. 개발된 포트란 시험 프로그램을 이용하여 대표적인 수치 예제를 수행하였으며, 수치결과로부터 PG-NEM이 효율적이고 정확하게 대변형 문제를 근사화하는 것을 확인하였다.