• Title/Summary/Keyword: Galerkin approximation

Search Result 89, Processing Time 0.03 seconds

A Study on the Fracture Phenomena in Optical Disks Due to Increase of the Rotating Speed (회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구)

  • 조은형;좌성훈;정진태
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.437-442
    • /
    • 2001
  • In this study, the fracture phenomena of optical disks are discussed by theoretical and experimental approaches and then some recommendations are presented to prevent the fracture. Linear equations of motion are discretized by using the Galerkin approximation. From the discretized equations, the dynamic responses are computed by the generalized- time integration method. As a fracture criterion for optical disks, the critical crack length is presented. From experimental methods, the fracture procedure is analyzed. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks.

  • PDF

Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity (비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석)

  • 정진태;정두한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Bending Analysis of Mindlin-Reissner Plates by the Element Free Galerkin Method with Penalty Technique

  • Park, Yoo-Jin;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.64-76
    • /
    • 2003
  • In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner plates by using the element-free Galerkin method. A penalized weak form for the Mindlin-Reissner Plates is constructed through the exterior penalty method to enforce the essential boundary conditions of rotations as well as transverse displacements. In the numerical examples, some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the order of integration and the size of influence domain are also carried out. The effect of the types of background cells on the accuracy of numerical solutions is observed and a proper type of background cell for obtaining optimal accuracy is suggested. Further, optimal order of integration and basis order of Moving Least Squares approximation are suggested to efficiently handle the irregularly distributed nodes through the triangular type of background cells. From the numerical tests, it is identified that unlike the finite element method, the proposed element-free Galerkin method with penalty technique gives highly accurate solution without shear locking in dealing with Mindlin-Reissner plates.

Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method (동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF

Higher Order Parabolic Equation Modeling Using Galerkin's Method (Galerkin방법을 이용한 고차 포물선 방정식 수중음 전달 해석)

  • 이철원;성우제;정문섭
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exact forward modeling of acoustic propagation is crucial in MFP such as inverse problems and various other acoustic applications. As acoustic propagation in shallow water environments become important, range dependent modeling has to be considered of which PE method is considered as one of the most accurate and relatively fast. In this paper higher order numerical rode employing the PE method is developed. To approximate the depth directional operator, Galerkin's method is used with partial collocation to lessen necessary calculations. Linearization of tile depth directional operator is achieved via expansion into a multiplication form of (equation omitted) approximation. To approximate the range directional equation, Crank-Nicolson's method is used. Final1y, numerical self stater is employed. Numerical tests are performed for various occan environment scenarios. The results of these tests are compared to exact solutions, OASES and RAM results.

  • PDF

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

UNIFORM DECAY OF SOLUTIONS FOR VISCOELASTIC PROBLEMS

  • Bae, Jeong-Ja
    • East Asian mathematical journal
    • /
    • v.19 no.2
    • /
    • pp.189-205
    • /
    • 2003
  • In this paper we prove the existence of solution and uniform decay rates of the energy to viscoelastic problems with nonlinear boundary damping term. To obtain the existence of solutions, we use Faedo-Galerkin's approximation, and also to show the uniform stabilization we use the perturbed energy method.

  • PDF

Computation of Wave Transformation over a Multi-Step Topography by a Scatterer Method (산란체법에 의한 다중 계단지형에서의 파랑변형 계산)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.439-451
    • /
    • 2008
  • Based on reflected and transmitted waves by a single step bottom, a new model of scatterer method is constructed which can be used to calculate wave transformation over a multi-step topography. The approximate results are tested by comparison with the more accurate results obtained from EFEM presented by Kirby and Dalrymple(1983). In the case of plane-wave approximation, solutions of the scatterer method and the EFEM are the same. Results obtained by the scatterer method with non-propagating modes are much better, in terms of phase for the calculated reflection and transmission coefficients, than those by plane-wave approximation. As the effect of non-propagating modes decreases, solutions of the scatterer method become closer to those of the EFEM.