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Abstract

Galerkin's finitc clement method is applied to a two-dimensional heat convection-diffusion
problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A
parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both
bearing pad and the collar are treated together, with proper juncture conditions on the interface
boundaries. It has been known that a numerical instability arises when the classical Galerkin’s
method, which is equivalent to a centered difference approximation, is applied to a parabolic-type
partial differential equation. Probably the simplest remedy for this instability is to use a one-sided
finite difference formula for the first derivative term in the finite difference method. However, in
the present coupled heat convection-diffusion problem in which the governing equation is
parabolized in a subdomain (lubricant), uniformly stable numerical solutions for a wide range of
the Peclet number are obtained in the numerical test based on Galerkin's classical finite element
method. In the present numerical computations, numerical convergence errors in several error
norms are presented in the first model problem. Additional numerical results for a more realistic

bearing lubrication problem are presented for a sccond numerical model.

(Oxy) Rectangular Coordinate Defined in Figure 1

Notations P, Peclet Number

A Constant in Error Representation T Temperature in Fahrenheit
C Heat Capacity T; Temperature in Subdomain 25 (i=1,2,3)
E; Error Norm Defined in Equation (13); (=1, T%  Test Function in Weak Formulation

v 4) T Approximate Solution for Temperature
fi Known Function on I'; (i=1 and 3) U Velocity Vector

in the Neumann Condition (u,v) Velocity Componcnt in the x and y-axis
ki Heat Film Coefficicnt on I'; (i:=1 and 3) 7 Coefficient of Convective Term

in the Robin Condition r; Boundary of Subdomain 2; (i=1 and 3)
J Heat-Mechanical Energy Conversion Factor I';u  Inlet (Upstream) Boundary of @

{=9336 in lbf/Btu) I':p  Outlet (Downstream) Boundary of 2,
Ji Juncture Boundary (i=1,2) 0 Density of Lubricant
ki Thermal Conductivity in 2: (i=1,2,3) o Dynamic Viscosity
L Length of Bearing Pad $2;  Three Subdomains (i=1,2,3}
n Index of Error
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Introduction

The main objective of the present DTNSRDC on-
going research in the Tribology Program at DTNS-
RDC is to develop a reliable tool to predict the
behavior of thrust bearings used in naval vessels
over a wide range of operating conditions, with
regard to both hydrodynamic and boundary lubri-
cation. The first step toward this goal is to improve
the hydrodynamic lubrication prediction. In this
first-step approach, an immediate improvement over
previous investigations is a full coupling of the
thermal energy equation in the lubricant and the
heat diffusion in the surrounding bearing and the
collar. In this approach, a temperature variation is
allowed across the lubricant film thickness and proper
matching conditions are imposed on the interface
boundaries between the lubricant and adjacent solids.
In the present analysis, the standard thermal energy
equation is parabolized by assuming that the ratio
of the diffusion term to the convection term along
the flow direction is of small order.

It has been known that for a parabolic-type partial
differential equation an instability arises when the
classical Galerkin method is applied, since this
method is equivalent to the centered difference
approximation. Probably the most extensively studied
problem of this type is solution of the well-known
boundary layer equations. In the boundary layer
equations, most often a one-sided finite difference
formula is used, which is equivalent to choosing
the basis for the test function space to be different
from that for the trial function space in the finite
element method. There are many reports describing
the introduction of various weighting functions in
the inner product or the choice of a test function
basis different (that is asymmetric) from the trial
function basis [1~7]. The choice of a test function
basis different from the trial function basis plays a
role in controlling the degree of “upwinding” to
maximize accuracy. Recently, extensive studies have
been made for general convection-diffusion equations.

However, rigorous investigations into the control of
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the degree of upwinding are limited to a simple one
dimensional model problem with constant coefficients.
For more general situations, maximization of accuracy
by controlling the degree of upwinding is not strai-
ghtforward. Therefore, it is desirable to have a
simple numerical scheme which is uniformly stable
over a wide range of values of the Peclet number.
In this report numerical results are obtained by
the classical Galerkin method. The present numerical
scheme gives uniformly stable results over a wide
range of Peclet number for the paraboilzed thermal
energy equation in the lubricant, The present num-
erical scheme is cquivalent to the centered difference
approximations for both the first and second deriv-

ative terms in the original differential equation.
Mathematical Modelling of the Problem

The computation domain consists of three rect-
angular subdomains, having heights H1, H2, H3,
and length L as shown in Figure 1. However, the
choice of actual boundary geometry is general (not
necessarily rectangular domains) in the present
method. The upper, middle, and lower subdomains
are the bearing pad, the lubricant, and the bearing
collar, denoted by §2;, 2., and £s, respectively. A
rectangular co-ordinate system is used, the y-axis
pointing upward and the x-axis pointing toward the
right-hand side. Th: origin is taken at the mid-point
of the left-hand side vertical boundary of the
lubricant. The boundary of each subdomain is as
shown in Figure 1,

0=, UJ; (i=1 and 3)
2, =1 U pUJ1UJ; (D
Here the flow velocity U is also shown in Figure 1.

In the present numerical test, we ignore the
convection term in the solids, ie., £, and 25, by
assuming they are stationary. The thermal conduct-
ivity, ki(i=1,3) is assumed constant in each subdo-
main. In the subdomain 2, (the lubricant), the
velocity distribution is specifed a priori, hence the
heat generating source term @(x,3) is known. The
density p and the specific heat € of the lubricant

are also assumed to be constants in £,. Furthermore

Journal of SNAK Vol. 19, No. 4, December 1982



Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication 21

i
r1' 01 n H,
Jq
y ]
dax Y. -Q-z [;Di M2
r2“] 1)
- J2

Fig. 1. Boundary Configurations

we assume that the diffusion term is much smaller
than the convection term along the z-axis, and that
the convection term is much smaller than the diffus-
ion term in the y-axis. From these assumptions the
original thermal energy equation, of an elliptic type
in the lubricant, can be paraboized as follows. Let
(i=1,2,3) be defined in each

corresponding subdomain £2;. Then the thermal en-

the temperature

ergy equation in each suadomain can be written as
—k7?Ti=0 in £;, (i=1 and 3)
wkzﬁ,jvz S _Q(r, y) in 2 2

2
where y=Cpu, and Gﬁzp(%;—) and g is the dynamic

viscosity. As mentioned before we assumed that the
term | &3 371‘2 /C u" 677" =o(1) and [va aaTZ /

ks ?_jy&w =o0(1) in the thermal energy equation in

£2,, where u and v are, the velocity components along
the x-axis and y-axis, respectively.

Since the thermal energy equation in £, is par-
abolized, we impose the boundary condition only on
the upstream boundary, I'.y, and proper juncture
conditions on Jy and Jy, i.e.,

Ty=Ts on 'y (3
where the temperature of incoming lubricant, T, is
specified. At the juncture surfaces J; and J; we
require continuity of the temperature and its normal
heat flux, i.e.,

Ty=T, and 2 T1,=k:Tsy on Ji
and

Ty=Ts and kyToy=k;3Tsy on Jp 4)
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In the first numerical model problem, the following
three standard types of boundary conditions on I'y
and I'; are treated specifically for testing numerical
convergence:
(i) Dirichlet type;
Ti=To on I'; (i=1 and 3) %)
where T, is specified.

(i) Neumann type;
I3 3;; =fi(z,y) on I(i=1 and 3) (6)

where fi(i=1 and 3) is specified.
(iii) Robin type;

B aT' i B Ti=hiTy on I'i(i=1 and 3) @

where the heat transfer film coefficient Ai(i=1 and
3) and the ambient oil temperature distribution 7To
(z,y) along I'y and I'y are specified. Here we assume
the boundaries, I'y and I's are in an oil bath with
It should be

noted here that the boundary condition on the

an ambient oil temperature To(x, ).

downstream boundary (outlet) of lubricant, I':»p, is
not specified but is obtained as a part of the solution.
This is because the original elliptic equation has
been reduced to a parabolic equation.

For the purpose of the error and convergence test
in the first model problem, we take Hy=H,=H3=2,
ki/k:=3, hi=hs=1, and the juncture boundaries Ji
and Jy are y=:1, respectively. We begin with the
exact solution given by a simple polynomial function
in each subdomain as follows;

T\(x,y)=—22+z2+2y*—3y+3 in £,
Tolz, y)=—222+z+3*+y in £,

Tylz, y)—~2.rz+.r+2y2+131y+% in 2 (8

From a given arbitrarily specified function of 7, one
can easily compute the heat generation ¢ by Egs
(2) and (8) as
Oz, y)=r(dxz—1)+2 (9
The three different types of baundary conditions
in model problem are computed from the known
exact solutions given in Eq(8). For example, with
hi=1 (i=1,3), To(x,y)
was computed from Eq(8) as

=k 3Ti L7 on oy (=] and 3)
hi on

the Robin type condition,

and
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To=y*+y on [y (10

In the second model problem, we only treat the
Robin boundary condition on 'y and I'; to simulate
a more realisitic experimental condition. For this
case, the geometry of the bearing pad and collar
and the lubricant film thickness are chosen as an
analogous model in two dimensions corresponding to

the three-dimensional experimental condition.

Galerkin’s Method and Numerical
Procedure

Before we describe Galerkin’s finite method applied
to the model problem formulated in the previous
section, it is convenient to introduce a single conti-
nuous temperature function 7T(x,y), defined in the
entire domain, 2=2,UR,U2;, as follows;

T(z,y)=Ti(z,y) in 2 (G=1,2,3). n
To construct the bilinear functional in weak form,
we first introduce the test function T* in the test
function space, and next define the inner product of
the original partial differential equations in (2) and
the test function T*. By integrating by parts the

inner product reduces to

ﬂmleTVT*dzdwaHmkg% aaTy* dxdy

+ fﬂakayTVT*dzder j“thT*ds+ jmhaTT*ds
[T T s

+ j I ToT*ds+ j s ToT*dl (12)

where the trial function T#=0 on I'.v, and the trial
function T is chosen so that the essential condition
T=To on I'yr is satisfied. Eq (12) is a weak from
form for the Robin condition. For the Dirichlet type
condition on I’y and I'y, the integrals along I'; and
Iy in Eq (12) are not present. On the other hand
the trial function should satisfy the Dirichlet con-
ditions and the test function is chosen to be zero
on I't and I';. In the case of the Neumann type
condition, the boundary integrals along Iy and I'3
appearing on the left-hand side of Eq (12) should
not be present and A; To in the integrands of the
boundary integrals along I'y and I's, on the right-
hand side of Eq (12), should be replaced by fi(z,
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¥), (i=1 and 3).

It is of interest to note that the juncture conditions
on Ji and J» given in Eq (4) are satisfied as natural
conditions in Galerkin’s functional equation given
above. In the numerical computations an isoparam-
ctric linear element is used as the basis for both
trial and test functions throughout the present
computations. This choice of basis function is equi-
valent to the centered fiinte difference approximation.
In a straightforward manner, the bilinear form in
Eq (12) is reduced to a set of algebraic equations.
The coefficient matrix obtained is not symmetric but
still has a banded structure. The asymmetry is duc
to the presence of the convective term in a subdo-
main. The Gaussian elimination method is used is

used to solve the reduced matrix equation.

Numerical Convergence Test in the
First Model

An extensive numerial test of the convergence has
been made in the first model problem. To test
numerical convergence of the present numerical
scheme, we define the error, E:(;=1,4), in four
different ways using the known exact solution T
given in Eq (8) and the finite element numerical

solution T'(z, y) as follows:
E=IT-TI.

E'z:{ﬂ (T—T)dzdy+- Hk[y(T~ Ty 2dzdy }1/'“’

Ey=|p(T—T)]s

E=|T-Tl, (13)
where || fl. and || |l; are the well-known max norm
and L, norm, and defined as

(1 T—Tl.= max | T—T|
(X,Y)en

17 T { [ (7= ydzas) (19)
and where k=% in 2; (i=1,2,3)

In the finite element mesh subdivisions, dx/dy=1
is used throughout the first model problem, where
4z, and dy are the lengths of the finite element
along the z- and y- axes respectively (i.e., a square
element is used for this model problem). Ten diffe-
rent sizes of uniform square elements are tested in

the range of 2<<L/4x<<20. The specific mesh-
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Fig. 2. Error covnergence test results for the Robin condition.
In Figure 2 through Figure 4, the following legends are used:
(a),(b),(c),(d) are the results of EiEsEs and Ei, respectively (see Eq 13) The ordinate scale is
the same in all figures. The curves designated by 1,2, and 3 correspond to the case of P.=0.01,
1, and 100, respectively.
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Fig. 3. Error convergence test results for the Neumann condition. (See Figure 2 for the legend)
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Fig. 4. Error convergence test results for the Dirichlet condition. (See Figure 2 for legend)

subdivisions tested are given in Table 1. In the
present model problem, the computations are made
for three values of Peclet number: Pe=yH,/2=0. 01,
1, and 100.

If we assume that the error behaves like E;on (4r)#
(i=1,2,3.4) as the limit 420, then we may repr-
esent the error as

E~=AQ/L", (15)
where A is constant and I is defined in Table 1.
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By taking the log of Eq (15), we obtain

In Es=ln A~n In I (16
From our numerical results for ten different finite-
element mesh subdivisions, we have plotted the
curve of the points (-In I, In E;) shown in Figs. 2
through 4. Trom the two finest finite eclement
subdivisions, the values of index n and the constant
A are obtained for three different values of the

Peclet number, Pe, and also for three types of
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Table 1. Ten different finite element subdivisions used for the error test.

Testcase)| 1 | 2 | 3 | 4 5 o6 | 7 [ 8 | 9 | 1
I 2 4 6 8 10 | 12 14 16 181 20
J 3 6 9 12 51 18 21 24 27| 30
EL 6 24 51 96 150‘ 216 | 204|384 | 48| 600
N 12 35 70 117 76| 27| 33| 42 5321 651
MB 9 17 23 29 35 a1 a7 53 8 63
DIM 08| 59| 1,610 3,395 | 6160 10,127 | 15510 | 22,525 | 31,388 | 42,315

I =Number of element along the z-axis
J =Nnmber of element along the y-axis
EL=Totai number of elements

Table 2. The Values of n in various

N

=Total numal number of nodes

MB =Bandwidth (asymmetric)

DIM=Core memory space for the coefficient matrix

Error Norms for Three Peclet Numbers, P..

Boundary Condition ‘

P. E, E. i Es E,
0.01 1.0033 1.0004 1..0000 2. 0000
Robin 1 2. 0607 1. 0004 1. 6000 1.9971
100 3.2114 1.1082 1. 1482 3.7273
0.01 1. 2871 1. 0004 1. 0000 1.9985
Neumannn 1 2.0098 1. 0004 1. 0000 1.9834
100 3. 6481 1.3138 1. 3709 4.1813
0.01 .9175 1.0004 1. 0000 2. 0000
Dirichlet 1 2. 0366 1.0003 9999 2.0003
100 2.1011 1. 0009 1.0008 1.9957

Table 3. The Values of Constant A in various Error Norms for Three Peclet Numbers, P,.

Boundary Condition P, E, E; E; Ey
0.01 . 2481 E —01 4761 E +02 . 2993E +02 L1721E 402
Robin 1 .7006 E +01 LATE9E 402 . 3005E +02 1726 E +02
100 . 2080E +-04 .6760E 02 . 4908 E +02 .1601E +05
0.0L .8260E — 01 L4761 E 402 . 2993E 402 .1740E +02
Neumann 1 .5876E -+01 AT69E +02 . 3002 E +02 .1641E +02
100 .1299E +05 L1281 E +03 L9813 E +02 . 1257E +06
0.01 .1740E —01 4761 E +02 .2993E +902 .1702E +02
Dirichlet 1 .6339E +01 . 4768 E +02 .3004E +-02 . 1747E +02
100 . 1472E 4-02 .4823E +02 .3085E +02 L1866 E +02

boundary conditions on I'y and ['.

The results are

the convergence of the E; crror is accelerated as the

Peclet number

increases - this is

given in Table 2 and 3. In Table 2 the values of n
for E; and E; are almost one, i.e., the corresponding
convergence error is linear, as a function of (D7}
for all three types of bounditions all three Peclet
numbers tested except for Pe=100 in the Neumann

boundary condition. It is surprising to see that the

contrary to our
cxpectation.

It is contrary to our expectation. It is also difficult
to draw any conclusion on the behavior on the
convergence of the error E, as the Peclet number

increases.
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In Table 3. the constant A for Ej increases as the
Peclet number increases with all three types of
boundary conditions on I'y and [I's. However, the
constant A for Es; and E; does not vary much for
all three types of boundary conditions and for the
three values of Peclet numbers.

From the results shown in Figure 3 and Table 2
and 3, the present numerical evidence shows uniform
convergence of the present numerical scheme.
However, a rigorous mathematical error analysis and
convergence proof is still open for the class of

parabolic-elliptic coupled problem treated here.

Results for a Second Model Problem

For the second model problem, the following

geometrical and material data are used:

Hy=H;=0.75 inch

H,=0.001 and 0. 000! inch

L =2.5 inch

1o =9.55 inch/sec and 47.75 inch/sec

C =0.5 Btu/lbm/°F

ky =k3=26 Btu/hr/ft/°F

ky =0.075 Btu/hr/ft/°F

To=100°F

hy =h3=30 Btu/hr/ft?/°F

« =6.5x10 lbm.sec/in

p =0.84x10 Ibf sec/in

J =9336 in.1bf/Btu
where u is the maximum velocity in the lubricant

film. The value of @ is approximated by

o D=5 ) = 1)

and 7 is computed by using the mean velocity, i.e.,
u=uo/2, since the velocity is assumed linear between
zero on J; and up on Ja.

If all the dimensional quantities are converted to
consistent dimensions using (Btu, sec, in, .F), then
the following values of coefficients are obtained for
use in Egs (2) and (7):

P - B
ky=ks=602x 10 sec in? °F/in
-1 7 - Btu

k2=1.74%10 sec in? °F/in
— — 6 _ Btu
hl—h3—51.81 %10 sec in®°F
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Table 4. Four tested cases for the values of y and &.

Case [ty Tuolinch/ | r(Btu/sec/ | ®(Btu/in/
Hz(mches) OSCC) in/oF)

No. sec)
1 0.001 9. 550 0. 0810 0. 06427
2 0. 001 47.750 0. 0405 1. 6070
3 0. 0001 9. 550 0. 0810 6. 4270
4 0. 0405

| 0. 0001 47.750 160. 7000

Table 4 shows four specific test conditions, which
are the combinations of two velocities and two film
thickness.

In the present computations, two different sets of
mesh subdivisions are uscd; the first set of data with
a coarse mesh has 77 nodes and 60 elements. The
second set of data with a fine mesh has 315 nodes
and 280 elements. In the fine mesh, we took four

uniform rectangular elements in the lubricant (2,

0.0008 \Axk\ ™~ -0.7505

0.7505 . =0.0005

Fig. 5. Temperature distributions for Case 1.
H,;=0.001 inch, #,=9.55 in/sec

\--0.0005

Fig. 6. Temperature distributions for Case 2.
H,=0.001 inch, #,=47.75 in/sec
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Fig. 7. Temperature distributions for Case 3.
H,=0.0001 inch, #=9.55 in/sec

o) =g
o i
R
[
# L
0.00005 A‘-{ig \ _0.75005
0.75005 -0.00008

Fig. 8. Temperature distributions for Case 4.
H,=0.0001 inch, #,=47.75 in/sec
and five uniform rectangular elements in both bearing
pad and collar (2, and 2;) along the y-axis, and
twenty elements along the x-axis.

The agreement between the computed temperatures
obtained by a fine mesh and a coarse mesh was good.
Therefore only the results obtained by using the
fine mesh are shown in Fig. 5 through 8 1In this
three dimensional computer plot of the temperature
distribution, a total of 315 nodes were used with
linear interpolation. It should be noted here that the
film thicknesses (i.e., 0.001 and 0.0001 inches) were
stretched very much along the y-axis for better
illustration in the computer plots.

The results for all four cases show that the effect
of the inlet temperature (100°F is used here) is

limited to a small local region arcund the inlet,
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This result shows that there exists a very thin
thermal boundary layer at the inlet (i.c., the initial
layer in the time-dependent problem). This results
is not surprising, since the heat is generated only
in the lubricant.

It is of interest to note that for all four cases,
the temperature T at the second node on the boun-
dary Jy (or J3) from the inlet (s, z=0) is lower
than that at the adjacent node inside the solids(i.e.,
2, or Q3). This means that there is a small region
of local backflow of heat flux. In other words, in
this region, the heat flux vector is pointing from
the point in the solid to the lubricant, even though
the only heat generating source in this problem is

in the lubricant region.

Concluding Remarks

From the numerical results presented for the first
model lubrication problem, we can conclude that the
seemingly-unstable classical Galerkin method is
uniformly stable over the range of the Peclet number
from 0.0l to 100. This stability is problably a result
of the subdomain of the parabolic equation being
sandwiched between two adjacent subdomains which
are elliptic without a convective term in the heat
transfer equations. It appears that the elliptic type
equations for the top and bottom subdomains play a
role in stabilizing the numerical scheme even though
we use the classical Galerkin method which is
equivalent to the centered finite difference approxim-
ation. In the second model problem, a local backflow
of the heat flux and the presence of the thermal
boundary layer are illustrated. Future work should
include the convective term in the bearing collar
where numerical stability may not result using the
present method, unless a proper weighting function

is introduced in the inner product.
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