• 제목/요약/키워드: Galerkin Finite Element Method

검색결과 248건 처리시간 0.022초

경사진 배플이 있는 셀측의 수치적 해석 (Numerical prediction of shell-side flow with inclined baffles)

  • 김은필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.119-124
    • /
    • 2000
  • A finite element method is applied to investigate the characteristics of the fluid flow and heat transfer performance in a channel in terms of the various effects of baffle cuts, baffle angles, and leakages. The results show that the decrease of a baffle cut gives a good heat transfer enhancement. However, it also increases pressure drop. In the case of an inclined baffle, the result shows that the pressure drop decreases with a reasonable heat transfer performance. But a steeply inclined baffle gives adverse effects on the performance of the channel. The clearances between baffle-to-shell and tube-to-baffle affect the overall performance. The effects of these parameters are discussed in details.

  • PDF

시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석 (Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral)

  • 이성희;심우진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

하천에서의 동수력학적 유동해석을 위한 유한요소모형의 개발 (Finite Element Model for the Hydrodynamic Analysis in a River)

  • 한건연;이종태;김홍태
    • 물과 미래
    • /
    • 제26권3호
    • /
    • pp.87-101
    • /
    • 1993
  • 하천에서의 동수역학적 유동해석을 위하여 2차원 천수방정식을 기본방정식으로 하고 이를 불연속구간함수와 upwinding weighting을 도입한 감쇠형 Galerkin 방법에 의하여 해석하는 RIV-FEM2를 개발하였다. RIV-FEM2는 전처리, 주처리, 후처리 과정으로 구성되었으며, 전처리와 주처리 과정은 Fortran-77으로, 후처리 과정은 turbo-Pascal에 의하여 각각 처리할 수 있도록 개발하였다. 2차원의 만곡부, 교량부, 축소부를 가진 대칭수로부등의 경우와 실제 하천에 대하여 본 모형을 적용한 결과 유속분포, 수면형 및 질량 유출입량 보존등의 면에서 안정성과 효율성이 우수하게 나타나 본 모형의 적용성을 입증할 수 있었다. 본 모형은 실제 하천의 이수 및 치수관리에 기여할 수 있을 것으로 판단된다.

  • PDF

유한요소법(有限尿素法)에 의한 항만(港灣)에서의 토사이송추정모형(土砂移送推定模型) (Sediment Transport Prediction Model in a Harbor by Finite Element Method)

  • 윤태훈
    • 대한토목학회논문집
    • /
    • 제2권2호
    • /
    • pp.19-28
    • /
    • 1982
  • 하구(河口), 항만(港灣) 등에서 응집성(凝集性) 및 비응집성토사(非凝集性土砂)의 이송추정(移送推定)을 위한 이차원토사이송추정모형(二次元土砂移送推定模型)이 개발되었으며 이 모형(模型)은 흐름에 의한 순환모형(循環模型)과 토사이송모형(土砂移送模型)으로 구성된다. 토사이송모형(土砂移送模型)은 이차원확산(二次元擴散) 방정식(方程式)과 연속방정식(連續方程式)으로 이루어진다. 해(解)는 Galerkin 유한요소법(有限尿素法)과 이단계(二段階) Lax-Wendroff 방법(方法)에 의하였다. 이차원수로(二次元水路)의 상이(相異)한 조건하에서 순환(循環)과 토사이송(土砂移送)에 관하여 수치모의(數値模擬) 되었으며 부산항(釜山港)에 적용하여 얻어진 결과중에서 실측치(實測値)와 비교가 가능한 흐름양상(樣相)은 대체로 실측치(實測値)와 근사(近似)하게 나타났다.

  • PDF

ESTRPOLATED CRANK-NICOLSON APPROXIMATION FOR A LINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ahn, Min-Jung;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.795-809
    • /
    • 2001
  • In this paper, we apply finite element Galerkin method to a single-ohase linear Stefan problem with a forcing term. We apply the extrapolated Crank-Nicolson method to construct the fully discrete approximation and we derive optimal error estimates in the temporal direction in $L^2$, $H^1$ spaces.

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.

회전 자계에 의한 철손의 유한요소 해석 (Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method)

  • 이학용;박관수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.