• Title/Summary/Keyword: Gafchromic EBT2 필름

Search Result 25, Processing Time 0.026 seconds

Evaluation of Dose Distribution Using Gafchromic $EBT^{(R)}$ Film (Gafchromic $EBT^{(R)}$ 필름을 이용한 선량분포의 평가)

  • Kang, Se-Sik;Ko, Seong-Jin;Jang, Eun-Sung
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Dose evaluation for small field such as stereotactic radiosurgery was performed using $Gafchromic^{(R)}$ EBT film. Every film which irradiated 6MV photon beam was scanned and obtained the optical density(OD) by flat bed scanner after 24 hours of irradiation. This study compared dose from diode in water and Gafchromic $EBT^{(R)}$ film in acrylic phantom to verify the reliability of the film, and to evaluate the SRS in clinical dose distributions from calculation and measurement in the region of virtual target in humanoid and cylindrical phantoms were compared. The Gafchromic $EBT^{(R)}$ film was found to be linear up to 9Gy. The $D_{max}$ for 6 MV was measured at 1.5 cm from the surface by both of diode and the film. As the depth is deeper, the error was measured within $2{\sim}3%$ at $10{\sim}20\;cm$ depth. Comparing between distribution from calculation and measurement, we found that there is 5% error at 90% isodose line. We found that given dose could be measured accurately by using the phantoms. It was feasible to use the Gafchromic $EBT^{(R)}$ film in quality assurance of SRS.

  • PDF

Feasibility Study of Dose Evaluation of Stereotactic Radiosurgery using GafChromic $EBT^{(R)}$ Film (GafChromic $EBT^{(R)}$ 필름을 이용한 뇌정위방사선치료의 선량분석 가능성 평가)

  • Jang, Eun-Sung;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Purpose: We have performed SRS (stereotactic radiosurgery) for avm (arterry vein malformation) and brain cancer. In order to verify dose and localization of SRS, dose distributions from TPS ($X-Knife^{(R)}$ 3.0, Radionics, USA) and GafChromic $EBT^{(R)}$ film in a head phantom were compared. Materials and Methods: In this study, head and neck region of conventional humanoid phantom was modified by substituting one of 2.5 cm slap with five 0.5 cm acrylic plates to stack the GafChromic $EBT^{(R)}$ film slice by slice with 5 mm intervals. Four films and five acrylic plates were cut along the contour of head phantom in axial plane. The head phantom was fixed with SRS head ring and adapted SRS localizer as same as real SRS procedure. CT images of the head phantom were acquired in 5 mm slice intervals as film interval. Five arc 6 MV photon beams using the SRS cone with 2 cm diameter were delivered 300 cGy to the target in the phantom. Ten small pieces of the film were exposed to 0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 cGy, respectively to calibrate the GafChromic $EBT^{(R)}$ film. The films in the phantom were digitized after 24 hours and its linearity was calibrated. The pixel values of the film were converted to the dose and compared with the dose distribution from the TPS calculation. Results: Calibration curve for the GafChromic $EBT^{(R)}$ film was linear up to 900 cGy. The R2 value was better than 0.992. Discrepancy between calculated from $X-Knife^{(R)}$ 3.0 and measured dose distributions with the film was less than 5% through all slices. Conclusion: It was possible to evaluate every slice of humanoid phantom by stacking the GafChromic EBT film which is suitable for 2 dimensional dosimetry, It was found that film dosimetry using the GafChromic $EBT^{(R)}$ film is feasible for routine dosimetric QA of stereotactic radiosurgery.

  • PDF

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom (3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가)

  • Lee, Sang-Uk;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.607-614
    • /
    • 2016
  • The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System (구동팬텀 시스템에 의한 움직이는 장기의 선량분포 분석)

  • Kim, Yon-Lae;Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Lee, Gui-Won;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purpose: Few researches have been peformed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. Materials and Methods: A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of $1.14g/cm^3,\;0.32g/cm^3$ respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose ditrbutions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Results: Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distrbutions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. Conclusion: The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles have more fluctuation at Gafchromic EBT. If the multipurpose phantom and moving device are used for treatment Q.A, and its corrections are made, treatment quality should be improved for the moving organs.

  • PDF

Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors (Gafchromic EBT2필름과 다양한 검출기를 이용하여 $3cm^2$ 이하의 소조사면에서 출력비율의 선량검증)

  • Oh, Se An;Yea, Ji Woon;Lee, Rena;Park, Heon Bo;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.218-224
    • /
    • 2014
  • The small field dosimetry is very important in modern radiotherapy because it has been frequently used to treat the tumor with high dose hypo-fractionated radiotherapy or high dose single fraction stereotactic radiosurgery (SRS) with small size target. But, the dosimetry of a small field (< $3{\times}3cm^2$) has been great challenges in radiotherapy. Small field dosimetry is difficult because of (a) a lack of lateral electronic equilibrium, (b) steep dose gradients, and (c) partial blocking of the source. The objectives of this study were to measure and verify with the various detectors the output factors in a small field (<3 cm) for the 6 MV photon beams. Output factors were measured using the CC13, CC01, EDGE detector, thermoluminescence dosimeters (TLDs), and Gafchromic EBT2 films at the sizes of field such as $0.5{\times}0.5$, $1{\times}1$, $2{\times}2$, $3{\times}3$, $5{\times}5$, and $10{\times}10cm^2$. The differences in the output factors with the various detectors increased with decreasing field size. Our study demonstrates that the dosimetry for a small photon beam (< $3{\times}3cm^2$) should use CC01 or EDGE detectors with a small active volume. And also, Output factors with the EDGE detectors in a small field (< $3{\times}3cm^2$) coincided well with the Gafchromic EBT2 films.

Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film (DICOM 파일을 사용한 Geant4 시뮬레이션과 Gafchromic EBT2 필름에 의한 인체 내 흡수선량 비교 연구)

  • Mo, Eun-Hui;Lee, Sang-Ho;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Monte Carlo method has been known as the most accurate method for calculating absorbed dose in the human body, and an anthropomorphic phantom has been mainly used as a method of simulating internal organs for using such a calculation method. However, various efforts are made to extract data on several internal organs in the human body directly from CT DICOM files in recent Monte Carlo calculation using Geant4 code and to use by converting them into the geometry necessary for simulation. Such a function makes it possible to calculate the internal absorbed dose accurately while duplicating the actual human anatomical structure. Thus, this study calculated the absorbed dose in the human body by using Geant4 associating with DICOM files, and aimed to confirm the usefulness by compare the result with the measured dose using a Gafchromic EBT2 film. This study compared the dose calculated using simulation and the measured dose in beam central axis using the EBT2 film. The results showed that the range of difference was an average of 3.75% except for a build-up region, in which the dose rapidly changed from skin surface to the depth of maximum dose. In addition, this study made it easy to confirm the target absorbed dose by internal organ and organ through the output of the calculated value of dose by CT slice and the dose value of each voxel in each slice. Thus, the method that outputs dose value by slice and voxel through the use of CT DICOM, which is actual image data of human body, instead of the anthropomorphic phantom enables accurate dose calculations of various regions. Therefore, it is considered that it will be useful for dose calculation of radiotherapy planning system in the future. Moreover, it is applicable for currently-used several energy ranges in current use, so it is considered that it will be effectively used in order to check the radiation absorbed dose in the human body.

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

Feasibility study of the usefulness of SRS thermoplastic mask for head & neck cancer in tomotherapy (두경부 종양의 토모치료 시 정위적방사선수술 마스크의 유용성 평가에 대한 연구)

  • Jeon, Seong Jin;Kim, Chul Jong;Kwon, Dong Yeol;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.355-362
    • /
    • 2014
  • Purpose : When head&neck cancer radiation therapy, thermoplastic mask is applied for patients with fixed. The purpose of this study is to evaluate usefulness of thermoplastic mask for SRS in tomotherapy by conparison with the conventional mask. Materials and Methods : Typical mask(conventional mask, C-mask) and mask for SRS are used to fix body phantom(rando phantom) on the same iso centerline, then simulation is performed. Tomotherapy plan for orbit and salivary glands is made by treatment planning system(TPS). A thick portion and a thin portion located near the treatment target relative to the mask S-mask are defined as region of interest for surface dose dosimetry. Surface dose variation depending on the type of mask was analyzed by measuring the TPS and EBT film. Results : Surface dose variation due to the type of mask from the TPS is showed in orbit and salivary glands 0.65~2.53 Gy, 0.85~1.84 Gy, respectively. In case of EBT film, -0.2~3.46 Gy, 1.04~3.02 Gy. When applied to the S-mask, in TPS and Gafchromic EBT3 film, substrantially 4.26%, 5.82% showed maximum changing trend, respectively. Conclusion : To apply S-mask for tomotherapy, surface dose is changed, but the amount is insignificant and be useful when treatment target is close critical organs because decrease inter and intra fractional variation.

Analysis on Longitudinal Dose according to Change of Field Width (선속 폭(Field Width) 변화에 따른 종축선량 분석)

  • Jung, Won-Seok;Back, Jong-Geal;Shin, Ryung-Mi;Oh, Byung-Cheon;Jo, Jun-Young;Kim, Gi-Chul;Choi, Tae-Gu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2011
  • Purpose: To analyze the accuracy of tumor volume dose following field width change, to check the difference of dose change by using self-made moving car, and to evaluate practical delivery tumor dose when tomotherapy in the treatment of organ influenced by breathing. Materials and Methods: By using self-made moving car, the difference of longitudinal movement (0.0 cm, 1.0 cm, 1.5 cm, 2.0 cm) was applied and compared calculated dose with measured dose according to change of field width (1.05 cm, 2.50 cm, 5.02 cm) and apprehended margin of error. Then done comparative analysis in degree of photosensitivity of DQA film measured by using Gafchromic EBT film. Dose profile and Gamma histogram were used to measure degree of photosensitivity of DQA film. Results: When field width were 1.05 cm, 2.50 cm, 5.02 cm, margin of error of dose delivery coefficient was -2.00%, -0.39%, -2.55%. In dose profile of Gafchromic EBT film's analysis, the movement of moving car had greater motion toward longitudinal direction and as field width was narrower, big error increased considerably at high dose part compared to calculated dose. The more field width was narrowed, gamma index had a large considerable influence of moving at gamma histogram. Conclusion: We could check the difference of longitudinal dose of moving organ. In order to small field width and minimize organ moving due to breathing, it is thought to be needed to develop breathing control unit and fixation tool.

  • PDF

Analysis of Changes in Skin Dose During Weight Loss when Tomotherapyof Nasopharynx Cancer (비인두암 토모테라피 시 체중 감소에 따른 피부선량 변화 분석)

  • Jang, Joon-Young;Kim, Dae Hyun;Choi, Cheon Woong;Kim, Bo-Hui;Park, Cheol-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.99-104
    • /
    • 2016
  • For patients receiving chemotherapy and radiation therapy treatment progresses as vomiting, nausea, weight of the patient because of a loss of appetite it is reduced. The patient's weight and the distance from the skin and the treatment site is expected to be closer, thereby reducing the change in the skin because of this dose. This study tests using a loose see the difference between the volume change appears as the weight of the patient using the same phantom and the phantom body of the patient. To using the same as the position EBT film is attached to the skin of the treatment site and was adjusted to the thickness of the Bolus. And using a computerized treatment planning only tomotherapy equipment was passed under the conditions according to the thickness of the radiation dose. To baseline for accurate reproduction position using the MVCT was applied to treated with verification. By passing a total of three dose reduced the error, it was a measure of the film by using a dedicated scanner, EBT VIDAR scanner. Got an increase in the skin dose is displayed each time the thickness of the bolus reduced, in a bolus was completely removed with the highest value. If the changes appeared dose was greater weight loss patients to chemotherapy and therefore bolus thickness variation considering the weight loss of the patient when applying the tomotherapy of nasopharynx cancer was found that the increase in skin dose be increased. This large patient before treatment due to weight loss over the image verification is considered to be established should consider how to re-create your mask and treatment plan for fixing it.