DOI QR코드

DOI QR Code

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom

3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가

  • Lee, Sang-Uk (Dept. of Radiation Oncology, Catholic University of Incheon St. Mary's Hospital) ;
  • Kim, Jeong-Koo (Dept. of Radiological Science, Hanseo University)
  • 이상욱 (가톨릭대학교 인천성모병원 종양학과) ;
  • 김정구 (한서대학교 방사선학과)
  • Received : 2016.10.28
  • Accepted : 2016.11.28
  • Published : 2016.12.31

Abstract

The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

토모를 이용한 회전 방사선치료 시 2차원적인 선량분포 평가 대신 3차원적 선량분포 평가의 필요성에 관하여 연구하였다. 토모 치료 부위의 정확한 선량분포를 측정하기 위하여 RANDO phantom을 이용하였으며, 평가 대조군으로 gafchromic EBT2 필름의 선량분포와 3차원 체적팬텀인 ArcCHECK phantom을 이용하여 3차원적인 선량분포를 gamma correction(3%/3 mm, 2%/2 mm)으로 평가하였다. 팬텀에 대한 치료 영역은 각각 0.5, 1, 1.5, 2, 2.5, 3 cm로 설정하였으며, 처방선량을 1,200 cGy로 하여 5회씩 선량을 조사하였다. Gafchromic EBT2 필름을 이용한 절대선량 측정 시 평균오차는 $0.76{\pm}0.59%$이었으며, ArcCHECK phantom을 이용한 절대선량 측정 시 평균오차는 $1.37{\pm}0.76%$로 나타났다. 선량분포의 평가에서 gafchromic EBT2 필름인 경우 gamma correction(3%/3 mm)은 평균 $97.72{\pm}0.02%$, ArcCHECK phantom인 경우 평균 $99.26{\pm}0.01%$로 측정되었다. 또한 gafchro mic EBT2 필름에서 gamma correction(2%/2 mm)의 평균은 $94.21{\pm}0.02%$이며, ArcCHECK phantom에서는 평균은 $93.02{\pm}0.01%$로 측정되었다. 토모치료를 이용한 환자 DQA에서 3차원 체적팬텀인 ArcCHECK phantom을 이용한 선량분포 평가가 cheese phantom을 이용한 선량분포 평가에 비하여 치료영역 주변부에 대한 정확한 측정과 실시간 평가가 가능하므로 환자의 치료가 보다 더 정확하고 빨리 이루어질 수 있을 것으로 사료된다.

Keywords

References

  1. Mack A., Scheib S.G., Major J., et al.: Precision dosimetry for narrow photon beams used in radiosurgery Determination of Gamma Knife output factors, Medical Physics, 29(9), 2080-2089, 2002 https://doi.org/10.1118/1.1501138
  2. Choi T.J., Kim O.B.: Evaluation of the output dose of a linear accelerator photon beams by using the ionization chamber TM31010 series through TG-51 protocol to postal monitoring output of RPC for 5 years, Korean Journal of Medical Physics, 22(2), 92-98, 2011
  3. Welsh J.S., Lock M., Harari P.M., et al.: Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy, Technology in cancer research & treatment, 5(5), 465-480, 2006 https://doi.org/10.1177/153303460600500503
  4. Cadman P., McNutt T., Bzdusek K.: Validation of physics improvements for IMRT with a commercial treatment-planning system, Journal of Applied Clinical Medical Physics, 6(2), 74-86, 2005 https://doi.org/10.1120/jacmp.v6i2.2083
  5. Mu G., Ludlum E., Xia P.: Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer, Physics in medicine & biology, 53(1), 77-88, 2008 https://doi.org/10.1088/0031-9155/53/1/005
  6. Bayouth J. E., Wendt D., Morrill S. M.: MLC quality assurance techniques for IMRT applications, Medical Physics, 30(5), 743-750, 2003 https://doi.org/10.1118/1.1564091
  7. LoSasso T., Chui C. S., Ling C. C.: Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode, Medical Physics, 28(11), 2209-2219, 2001 https://doi.org/10.1118/1.1410123
  8. Ju S. G., Ahn Y. C., Huh S. J., Yeo I. J.: Film dosimetry for intensity modulated radiation therapy: dosimetric evaluation, Medical Physics, 29(3), 351-355, 2002 https://doi.org/10.1118/1.1449493
  9. Herzen J., Todorovic M., Cremers F., et al.: Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine, Physics in medicine and biology, 52(4), 1197-1208, 2007 https://doi.org/10.1088/0031-9155/52/4/023
  10. Daniel L, Misbah G, Di Yan, et al.: Evaluation of a 2D diode array for IMRT assurance. Radiation & Oncology, 70(1), 199-206, 2004 https://doi.org/10.1016/j.radonc.2003.10.014
  11. Young-Taek Oh, Haejin Kang, Miwha Kim et al.: Three-dimensional dosimetry using magnetic resonance imaging of polymer gel, The Journal of the Korean society for therapeutic radiology and oncology, 20(3), 264-273, 2002
  12. Bedford J.L., Lee Y.K., Wai P., South C.P., Warrington A.P.: Evaluation of the Delta4 phantom for IMRT and VMAT verification, Physics in medicine and biology, 54(9), 167-176, 2009 https://doi.org/10.1088/0031-9155/54/9/N04
  13. Van Esch A., Clermont C., Devillers M., et al.: On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom, Medical Physics, 34(10), 3825-3837, 2007 https://doi.org/10.1118/1.2777006
  14. H. Fakir, S. Gaede, M. Mulligan, J.Z. Chen.: Development of a novel ArcCHECK insert for routine quality assurance of VMAT delivery including dose calculation with inhomogeneities, Medical Physics., 39(7), 4203-4208, 2012 https://doi.org/10.1118/1.4728222
  15. Welsh J.S., Lock M., Harari P.M., Tome W.A., et al.: Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy, Technology in cancer research & treatment, 5(5), 465-480, 2006 https://doi.org/10.1177/153303460600500503