DOI QR코드

DOI QR Code

Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors

Gafchromic EBT2필름과 다양한 검출기를 이용하여 $3cm^2$ 이하의 소조사면에서 출력비율의 선량검증

  • Oh, Se An (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Yea, Ji Woon (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Lee, Rena (Department of Radiation Oncology, School of Medicine, Ewha Womans University) ;
  • Park, Heon Bo (Department of Neurosurgery, Konkuk University Medical Center) ;
  • Kim, Sung Kyu (Department of Radiation Oncology, Yeungnam University Medical Center)
  • 오세안 (영남대학교의료원 방사선종양학과) ;
  • 예지원 (영남대학교의료원 방사선종양학과) ;
  • 이레나 (이화여자대학교 의과대학 이대목동병원 방사선종양학교실) ;
  • 박헌보 (건국대학교의료원 신경외과) ;
  • 김성규 (영남대학교의료원 방사선종양학과)
  • Received : 2014.11.16
  • Accepted : 2014.12.19
  • Published : 2014.12.30

Abstract

The small field dosimetry is very important in modern radiotherapy because it has been frequently used to treat the tumor with high dose hypo-fractionated radiotherapy or high dose single fraction stereotactic radiosurgery (SRS) with small size target. But, the dosimetry of a small field (< $3{\times}3cm^2$) has been great challenges in radiotherapy. Small field dosimetry is difficult because of (a) a lack of lateral electronic equilibrium, (b) steep dose gradients, and (c) partial blocking of the source. The objectives of this study were to measure and verify with the various detectors the output factors in a small field (<3 cm) for the 6 MV photon beams. Output factors were measured using the CC13, CC01, EDGE detector, thermoluminescence dosimeters (TLDs), and Gafchromic EBT2 films at the sizes of field such as $0.5{\times}0.5$, $1{\times}1$, $2{\times}2$, $3{\times}3$, $5{\times}5$, and $10{\times}10cm^2$. The differences in the output factors with the various detectors increased with decreasing field size. Our study demonstrates that the dosimetry for a small photon beam (< $3{\times}3cm^2$) should use CC01 or EDGE detectors with a small active volume. And also, Output factors with the EDGE detectors in a small field (< $3{\times}3cm^2$) coincided well with the Gafchromic EBT2 films.

소조사면의 선량검증은 고선량을 1회에 치료하는 정위적방사선수술(Stereotactic radiosurgery, SRS)과 고선량을 소분할 하여 치료하는 소분할방사선치료(hypo-fractionated radiotherapy)에서 작은 크기의 종양을 치료하기 위해서 자주 사용되기 때문에 현대의 방사선치료에서 있어서 매우 중요하다. 그러나, $3cm^2$ 이하의 소조사면에 대한 선량검증은 방사선치료에서 있어서 대단한 도전이다. 소조사면의 선량검증은 (a) 측방전자균형(lateral electronic equilibrium)의 부족, (b) 급격한 선량 기울기(steep dose gradient), (c) 선원의 부분적 차폐 때문에 어렵다. 이 연구의 목적은 6 MV 광자선의 $3cm^2$ 이하의 소조사면에서 출력비율을 다양한 검출기로 측정하고 검증하는 것이다. 출력비율은 CC13 이온함, CC01 이온함, EDGE 검출기, 열발광선량계(thermoluminescence dosimeters, TLD), Gafchromic EBT2 필름을 이용하여 $0.5{\times}0.5cm^2$, $1{\times}1cm^2$, $2{\times}2cm^2$, $3{\times}3cm^2$, $5{\times}5cm^2$, $10{\times}10cm^2$의 다양한 조사면에서 측정하였다. 출력비율의 차이는 조사면의 크기가 작아질수록 검출기간의 차이는 증가하였다. 본 연구의 결과는 $3cm^2$ 이하의 소조사면의 선량측정은 CC01 이온함, EDGE 검출기와 같은 작은 크기의 방사부부피(active volume)를 가지는 검출기를 사용해야 한다는 것을 입증하였다. 또한, $3cm^2$ 이하의 소조사면에서 EDGE 검출기의 출력비율은 Gafchromic EBT2 필름의 결과와 잘 일치하였다.

Keywords

References

  1. Rao M, Wu J, Cao D, et al: Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using image-modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 83(2):e251-e256 (2012) https://doi.org/10.1016/j.ijrobp.2011.12.001
  2. Chan MK, Kwong DL, Ng SC, Tong AS, Tam EK: Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers. Med Phys 40(4):041712 (2013) https://doi.org/10.1118/1.4794505
  3. Matsugi K, Nakamura M, Miyabe Y, et al: Evaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer. Radiol Phys Technol 6(1):233-240 (2013) https://doi.org/10.1007/s12194-012-0193-y
  4. Palm A, Nilsson E, Herrnsdorf L: Absorbed dose and dose rate using Varian OBI 1.3 and 1.4 CBCT system. J Appl Clin Med Phys 11(1):229-240 (2010)
  5. Oh SA, Kang MK, Yea JW, Kim SH, Kim KH, Kim SK: Comparison of Intensity Modulated Radiation Therapy Dose Calculations with a PBC and AAA Algorithms in the Lung Cancer. Kor J Med Phys 23(1):48-53 (2012)
  6. Chetty IJ, BCurran, Cygler JE, et al: Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34(12):4818-4853 (2007) https://doi.org/10.1118/1.2795842
  7. IPEM Report 103: Small field MV photon dosimetry. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry, Vienna, Austria (2010)
  8. Larraga-Gutierrez JM, Garcia-Hernandez D, Garcia-Garduno OA, Galvan de la Cruz OO, Ballesteros- Zebadua P, Esparza-Moreno KP: Evaluation of the Gafchromic(R) EBT2 film for the dosimetry of radiosurgical beams. Med Phys 39(10):6111-6117 (2012) https://doi.org/10.1118/1.4752211
  9. Hardcastle N, Basavatia A, Bayliss A, Tome WA: High dose per fraction dosimetry of small field with Gafchromic EBT2 film. Med Phys 38(7):4081-4085 (2011) https://doi.org/10.1118/1.3597834
  10. Laub WU, Wong T: The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30(3):341-347 (2003) https://doi.org/10.1118/1.1544678
  11. Chung H, Lynch B, Samant S: High-precision GAFCHROMIC EBT film-based absolute clinical dosimetry using a standard flatbed scanner without the use of a scanner non-uniformity correction. J appl clin med phys / AAPM 11(2):3112 (2010)
  12. Bassinet C, Huet C, Derreumaux S, et al: Small fields output factors measuremets and correction factors determination for several detectors for CyberKnife(R) and linear accelerators equipped with microMLC and circular cones. Med Phys 40(7): 071725 (2013) https://doi.org/10.1118/1.4811139
  13. Das IJ, Ding GX, Ahnesjo A: Small fields: Nonequilibrium radiation dosimetry. Med Phys 35(1):206-215 (2008) https://doi.org/10.1118/1.2815356
  14. Sanchez-Doblado F, Andreo P, Capote R, et al: Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams. Phys Med Biol 48(14):2081-2099 (2003) https://doi.org/10.1088/0031-9155/48/14/304
  15. Vlamynck K De, Palmans H, Verhaegen F, De Wagter C, De Neve W, Thierens H: Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams. Med Phys 26(9):1874-1882 (1999) https://doi.org/10.1118/1.598693
  16. Verhaegen F,Das IJ, Palmans H: Monte Carlo dosimetry study of a 6 MV stereotactic radiosurgery unit. Phys Med Biol 43(10):2755-2768 (1998) https://doi.org/10.1088/0031-9155/43/10/006
  17. Sauer OA, Wilbert J: Measurement of output factors for small photon beams. Med Phys 34(6):1983-1988 (2007) https://doi.org/10.1118/1.2734383
  18. Haryanto F, Fippel M, Laub W, Dohm O, Nusslin F: Investigation of photon beam output factors for conformal radiation therapy - Monte Carlo simulations and measurements. Phys Med Biol 47(11):N133-N143 (2002) https://doi.org/10.1088/0031-9155/47/11/401
  19. Francescon P, Cora S, Cavedon C: Total scatter factors of small beams: A multidetector and Monte Carlo study. Med Phys 35(2):504-513 (2008) https://doi.org/10.1118/1.2828195
  20. Lee HJ, Choi TJ, Oh YK, et al: The Output Factor of Small Field in Multileaf Collimator of 6MV Photon Beams. Progress in Medical Physics 25(1):15-22 (2014) https://doi.org/10.14316/pmp.2014.25.1.15
  21. Oh SA, Kang MK, Yea JW, Kim SK, Oh YK: Study of the penumbra for high-energy photon beams with GafchromicTM EBT2 films. J Kor Phys Soc 60(11):1973-1976 (2012) https://doi.org/10.3938/jkps.60.1973
  22. Cranmer-Sargison G, Weston S, Sidhu NP, Thwaites DI: Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations. Radiother Oncol 100 (3):429-435 (2011) https://doi.org/10.1016/j.radonc.2011.09.002

Cited by

  1. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner vol.12, pp.5, 2014, https://doi.org/10.1371/journal.pone.0177562
  2. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance of intensity-modulated radiotherapy vol.12, pp.7, 2014, https://doi.org/10.1371/journal.pone.0181560
  3. Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy vol.28, pp.3, 2017, https://doi.org/10.14316/pmp.2017.28.3.106
  4. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones vol.64, pp.11, 2019, https://doi.org/10.1088/1361-6560/ab1f26
  5. Fabrication and Dosimetric Evaluations of a Dummy Eye Shield for Radiotherapy vol.75, pp.8, 2014, https://doi.org/10.3938/jkps.75.605
  6. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55 vol.47, pp.12, 2014, https://doi.org/10.1002/mp.14497