• Title/Summary/Keyword: GaN-based material

Search Result 86, Processing Time 0.028 seconds

Light Enhancement Al2O3 Passivation in InGaN/GaN based Blue Light-emitting Diode Lamps

  • So Soon-Jin;Kim Kyeong-Min;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.775-779
    • /
    • 2006
  • In this study, sputtered $Al_2O_3$ thin films were evaluated as a passivation layer in the process of InGaN-based blue LEDs in order to improve the brightness of LED lamps. In terms of packaged LED lamps, lamps with $Al_2O_3$ passivation layer emanated higher brightness than those with $SiO_2$ passivation layer, and LED lamps with 90 nm $Al_2O_3$ passivation layer were the brightest among four kinds of lamps. Although lamps with $Al_2O_3$ passivation had a slight increase in operating voltage, their brightness was improved about 13.6 % compare to the lamps made of conventional LEDs without the changes of emitting wavelength.

Formation Mechanism of a Large Schottky Barrier Height for Cr-AlGaN/GaN Heterostructure (Cr/n-AlGaN/GaN Schottky Contact에서 높은 쇼트키 장벽 형성 메카니즘에 관한 연구)

  • Nam, Hyo-Duk;Lee, Yeung-Min;Jang, Ja-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.266-270
    • /
    • 2011
  • We report on the formation mechanism of large Schottky barrier height (SBH) of nonalloyed Cr Schottky contacts on strained Al0.25Ga0.75N/GaN. Based on the current-voltage (I-V) and capacitance-voltage (C-V) data, the SBHs are determined to be 1.98 (${\pm}0.02$) and 2.07 (${\pm}0.02$) eV from the thermionic field emission and two-dimensional electron gas (2DEG) calculations, respectively. Possible formation mechanism of large SBH will be described in terms of the formation of Cr-O chemical bonding at the interface between Cr and AlGaN/GaN, low binding-energy shift to surface Fermi level, and the reduction of 2DEG electrons.

The effect of the processing parameters on the growth of GaN thick films by a sublimation technique (승화법에 의한 GaN 후막성장시 공정변수의 영향)

  • 노정현;박용주;이태경;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.235-240
    • /
    • 2003
  • The development of large area GaN substrates is one of important issues in expanding of GaN-based applications. In order to investigate the possibility, GaN thick films were grown by a sublimation technique, using MOCVD-GaN films grown on a sapphire as a seed-crystal substrate and a commercial GaN powder as a source material. The pressure in chamber under the fixed flow rate of $N_2$ gas and $NH_3$ gas was kept at 1 atmosphere and the effects of the various processing parameters such as the distance between source material and seed crystal, the temperature of top- and bottom heater and the growth time during the growth of GaN thick film were investigated. The growth feature and microstructure of the GaN thick films were observed by SEM and XRD. The optical bandgap properties and the defects were evaluated by the PL measurement. By these results, the growth conditions such as the distance between the GaN source and the seed substrate, the growth temperature and the growth time were determined for the satisfied growth of GaN thick films.

Device Characteristics of GaN MESFET with the maximum frequency of 10 GHz (최대추파 10 GHz GaN MESFET의 소자특성)

  • 이원상;정기웅;문동찬;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.497-500
    • /
    • 1999
  • This paper reports on the fabrication and characteristics of recessed gate GaN MESFETs fabricated using a photoelectrochemical wet etching method. The unique etching process utilizes photo-resistive mask and KOH based etchant. GaN MESFETs with successfully recessed gate structure was characterized in terms of dc and RF performance. The fabricated GaN MESFET exhibits a current saturation at $V_{DS}$ = 4 V and a pinch-off at $V_{GS}$ =-3V The peak drain current of the device is about 230mA/mm at 300 K and the value is remained almost same for 500K operation. The $f_{T}$ and $f_{max}$ from the device are 6.357Hz and 10.25 GHz, respectively.y.y.

  • PDF

The Influence of the Mg-doped p-GaN Layer Activated in the O2 Ambient on the Current-Voltage Characteristics of the GaN-Based Green LEDs (O2 분위기에서 p-GaN 층의 Mg 활성화가 GaN계 녹색 발광소자에 미치는 전류-전압특성)

  • 윤창주;배성준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.441-448
    • /
    • 2002
  • The electrical properties of the GaN-based green light emitting diodes(LEDs) with the Mg-doped p-GaN layer activated in $N_2$ or $O_2$ ambient have been compared. For the $N_2$ -ambient activation the current-voltage behavior of LEDs has been found to be improved when the Mg dopants activation was performed in the higher temperature. However, for the $O_2$-ambient activation the current-voltage characteristic has been observed to be enhanced when the Mg dopants activation was carried out in the lower temperature. The minimum forward voltage at 20mA was obtained to be 4.8 V for LEDs with the p-GaN layer activated at $900^{\circ}C$ in the $N_2$ ambient and 4.5V for LEDs with the p-GaN layer treated at $700^{\circ}C$ in the $O_2$ambient, repectively. The forward voltage reduction of the LEDs treated in the $O_2$-ambient may be related to the oxygen co-doping of the p-GaN layer during the activation process. The $O_2$ -ambient activation process is useful for the enhancement of the LED performance as well as the fabrication process since this process can activate the Mg dopants in the low temperature.

Photo-assisted GaN wet-chemical Etching using KOH based solution (KOH계열 수용액을 이용한 GaN 박막의 photo-assisted 식각 특성)

  • Lee, Hyoung-Jin;Song, Hong-Ju;Choi, Hong-Goo;Ha, Min-Woo;Roh, Cheong-Hyun;Lee, Jun-Ho;Park, Jung-Ho;Hahn, Cheol-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.339-339
    • /
    • 2010
  • Photo-assisted wet chemical etching of GaN thin film was studied using KOH based solutions. A $2{\mu}m-2{\mu}m$ titanium line-and-space pattern was used as a etching mask. It is found that the etching characteristics of the GaN thin film is strongly dependent on the pattern direction by unisotropic property of KOH based solution. When the pattern was aligned to the [$11\bar{2}0$] directions, ($10\bar{1}n$)-facet is revealed constructing V-shaped sidewalls.

  • PDF

Studies on Improvement of Schottky Characteristics for GaN Devices (GaN 소자의 쇼트키 특성 향상에 관한 연구)

  • 윤진섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.700-706
    • /
    • 2001
  • In this paper, I have fabricated and measured the gallium nitride(GaN) based Schottky diodes, and have carried out analyses of degradation of Schottky barrier characteristics. To improve of degraded Schottky barrier characteristics, I have carried out several experiments such as N$_2$ plasma exposure, annealing in N$_2$ ambient and annealing after N$_2$ plasma exposure. In the results of these experiments, I have achieved that only annealing in N$_2$ ambient is enough to improve the Schottky barrier characteristics, are temperature of 700$\^{C}$ and time of 90 sec in N$_2$ ambient furnace. for the analysis of these experiments, I have carried out the measurement of electric characteristics and quantitative analysis of etching damage using AES(Aguger Electron Spectroscopy).

  • PDF

Observation of Strong Coupling between Cavity Photon and Exciton in GaN Micro-rod

  • Gong, Su-Hyun;Ko, Suk-Min;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.297.2-297.2
    • /
    • 2014
  • Strong exciton-photon coupling in microcavities have generated an intense research effort since quasiparticles called exciton polaritons are produced and shows interesting phenomena. Most of studies have been done with GaAs based microcavities at cryogenic temperature. Recently, GaN material which has large exciton binding energy and oscillator strength has much attention because strong coupling between photon and exciton could be realized at room temperature. However, fabrication of high quality microcavity using GaN is challengeable due to the large mismatch between the lattice and the thermal expansion coefficient in GaN based distributed Bragg mirror. Here, we observed strong coupling regime of exciton-photon in GaN micro-rods which were grown by metalorganic vapour phase epitaxy (MOCVD) on Si substrate. Owing to the hexagonal cross-section of micro-rod, whispering gallery modes of photon are naturally formed and could be coupled with exciton in GaN. Using angle-resolved micro-photoluminescence measurement, exciton polariton dispersion curves were directly observed from GaN micro-rod. We expect room temperature exciton polariton condensation could be realized in high quality GaN micro-rod.

  • PDF

The Effect of Current Flow on Active Layer by n-GaN Electrode Patterns in GaN-based Vertical Light-Emitting Diodes (수직형 구조 GaN 발광다이오드의 n-GaN 위 전극구조에 따른 활성층 영역에서의 전류분포 전산모사)

  • Lee, Byoung-Gyu;Shin, Young-Chul;Kim, Eun-Hong;Kim, Chul-Min;Lee, Wan-Ho;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.326-326
    • /
    • 2008
  • 갈륨 질화물 (GaN) 기반의 발광다이오드(Light Emitting Diode, LED)는 최근 디스플레이, 교동신호등, 휴대폰용 키패드의 광원 등에 널리 사용되는 전자소자로, 차세대 조명용 광원으로도 각광받고 있다. 일반적인 수평 구조의 LED에 비해 수직형 구조 LED 는 발광면이 n-GaN 표면 전체이며, 전류 확산 특성이 매우 뛰어남으로 인해 차세대 구조라고 표현되어 진다. 이런 구조에서 활성층 영역에서의 균일한 전류 분포는 전류밀집 현상을 억제하여 결과적으로 광학적 특성을 향상시킨다. 따라서 현재까지도 전류확산에 따른 발광다이오드의 성능향상에 대한 연구가 다각도로 이루어지고 있다. 본 연구에서는 수직형 GaN LED 의 전극 패턴에 따른 활성층 영역에서의 전류밀도 분포에 대해 조사하였다. 전극 패턴의 크기 및 구조 변화에 따른 활성층 영역에서의 전류분포도를 삼차원 회로 모델을 이용하여 분석하였다. 또한 활성층 영역으로 주입되는 전류 밀도의 크기가 내부양자효율에 미치는 영향에 대하여 알아보았다. 활성층 영역에서의 균일한 전류밀도 분포를 갖는 전극구조를 설계하였으며, 각각의 전극구조를 적용한 수직형 GaN LED의 전기/광학적 특성에 대해 전산모사 하였다. 최종적으로, n-GaN 위 전극의 크기 및 구조 변화에 대한 시뮬레이션 결과를 토대로, 균일한 전류분포 및 내부 양자효율 향상을 위한 전극패턴 설계 방침을 제안한다.

  • PDF

Characteristics of p-InGaN/GaN Superlattice structure of the p-GaN according to annealing conditions (p-InGaN/GaN 초격자구조에서 열처리 조건에 따른 오믹전극의 특성)

  • Jang, Seon-Ho;Kim, Sei-Min;Lee, Young-Woong;Lee, Young-Seok;Lee, Jong-Seon;Park, Min-Jung;Park, Il-Kyu;Jang, Ja-Soon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.160-160
    • /
    • 2010
  • In this work, we investigate ohmic contacts to p-type GaN using a Pt/Cu/Au metallization scheme in order to achieve low resistance and thermally stable ohmic contact on p-GaN. An ohmic contact formed by a metal electrode deposited on a highly doped InGaN/GaN superlattice sturucture on p-GaN layer. The specific contact resistance is $1.56{\times}10^{-6}{\Omega}cm^2$ for the as-deposited sample, $1.35{\times}10^{-4}{\Omega}cm^2$ for the sample annealed at $250^{\circ}C$ and $6.88{\times}10^{-3}{\Omega}cm^2$ for the sample annealed at $300^{\circ}C$.

  • PDF