• Title/Summary/Keyword: GaN semiconductor

Search Result 339, Processing Time 0.026 seconds

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Shin, Hong-Sik;Oh, Se-Kyung;Kang, Min-Ho;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.260-264
    • /
    • 2010
  • In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

Characterization of Silicon Structures with pn-junctions Fabricated by Modified Direct Bonding Technique with Simultaneous Dopant Diffusion (불순물 확산을 동시에 수행하는 수정된 직접접합방법으로 제작된 pn 접합 실리콘소자의 특성)

  • Kim, Sang-Cheol;Kim, Eun-dong;Kim, Nam-kyun;Bahng, Wook;Kostina, L.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.828-831
    • /
    • 2001
  • A simple and versatile method of manufacturing semiconductor devices with pn-junctions used the silicon direct bonding technology with simultaneous impurity diffusion is suggested . Formation of p- or n- type layers was tried during the bonding procedure by attaching two wafers in the aqueous solutions of Al(NO$_3$)$_3$, Ga(NO$_3$)$_3$, HBO$_3$, or H$_3$PO$_4$. An essential improvement of bonding interface structural quality was detected and a model for the explanation is suggested. Diode, Dynistor, and BGGTO structures were fabricated and examined. Their switching characteristics are presented.

  • PDF

Output Property of Ge-Thermopile Sensor (Ge계 열전센서의 출력특성)

  • Park, Su-Dong;Kim, Bong-Seo;Oh, Min-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.265-266
    • /
    • 2006
  • It was well known that thermopile was quiet a competent sensor using to probe the temperature of "hot point" where the temperature can be off the temperature-limitation for normal operation of the main electrical power equipment. In the present work, we aimed for developing new Ge-thermopile materials which can be using a non-contact temperature sensors at various hot-point of the power equipment and evaluation of its output property. As a results of the present works, a new thermopile which were composed Ga-poded p-type and Sb-doped n-type in Ge-semiconductor were designed and manufactured by MBE(Molecular Beam Epitaxy) process and showed superior sensitivity at room temperature.

  • PDF

PTCR Properties of $BaTiO_3$ Ceramic Variation of Dopant (APCVD법을 활용한 다결정 실리콘 박막의 전기적 특성 분석)

  • Yang, Jae-Hyuk;Kim, Jae-Hong;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.319-320
    • /
    • 2008
  • 본 연구에서는 대기압하에서 고품질의 산화막 증착을 목적으로 TEOS(Tetraethyl Orthosilicate)를 이용하여 APCVD법(Atmospheric Pressure CVD)으로 실리콘 산화막을 증착하고 하였으며, 특성 비교를 위하여 ICP-CVD를 이용하여 $SiH_4$$N_2O$ source gas를 이용하여 산화막을 증착하였다. 트랜지스터 제작후 Semiconductor measurement system을 이용하여 TFT의 전기적 특성을 측정 하였으며, 결과적으로 유기 사일렌을 사용한 경우 보다 우수한 전기적 특성을 확인할 수 있었다.

  • PDF

Chemo-Mechanical Polishing Process of Sapphire Wafers for GaN Semiconductor Thin Film Growth (사파이어 웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구)

  • 신귀수;황성원;서남섭;김근주
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2004
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum of 89 arcsec. The surfaces of sapphire wafer were mechanically affected by residual stress during the polishing process. The wave pattern of optical interference of sapphire wafer implies higher abrasion rate in the edge of the wafer than its center from the Newton's ring.

Design and Analysis of All-Metal Induction Cooktop for Power Semiconductor Devices (전력반도체 소자에 따른 All Metal Induction Cooktop 설계 및 손실분석)

  • Sim, Dong Hyun;Kwon, Man Jae;Jang, EunSu;Park, Sang Min;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.160-161
    • /
    • 2019
  • 본 논문에서는 Si-MOSFET 및 GaN-HEMT 기반 All Metal Induction Cooktop의 고효율 동작을 위한 공진네트워크 설계 및 운전주파수영역을 제시한다. 이를 위해 워킹 코일과 용기의 등가 파라미터를 바탕으로 동작 주파수에 따른 공진 네트워크를 각각 설계한다. 또한 시뮬레이션 및 수학적 계산을 통해 설계된 시스템의 주파수 조건 별 손실 비교를 통해 각 스위칭 소자에 따른 적합한 공진네트워크 설계방안을 제시한다.

  • PDF

Fabrication and Characteristics of an InP Single HBT and Waveguide PD on Double Stacked Layers for an OEMMIC

  • Kim, Hong-Seung;Kim, Hye-Jin;Hong, Sun-Eui;Jung, Dong-Yun;Nam, Eun-Soo
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.61-64
    • /
    • 2004
  • We have explored the fabrication of an InP/InGaAs single heterojunction bipolar transistor (HBT) and a wave guide p-i-n photodiode (PD) on two kinds of double stacked layers for the implementation of an optoelectronic millimeter-wave monolithic integrated circuit (OEMMIC). We applied a photosensitive polyimide for passivation and integration to overcome the large difference between the HBT and PD layers of around $3{\mu}m$. Our experiment showed that the RF characteristics of the HBT were dependent on the location of the PD layer, while the dc performances of the HBTs and PDs were independent of the type of stacked layer used. The $F_t$ and $F_{max}$ of the HBTs on the HBT/PD stacked layer were 10% lower than those of the HBTs on the PD/HBT stacked layer.

  • PDF

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF