• Title/Summary/Keyword: GaN film

검색결과 315건 처리시간 0.024초

Undoped-GaN 압전 박막을 이용한 RF용 SAW 필터의 제조 및 특성분석 (Characteristics analysis and fabrication of SAW filter for micro-wave using Undoped-GaN thin film)

  • 장철영;박민정;정은자;고성용;최현철;이정희;이용현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.423-426
    • /
    • 2002
  • Undoped-GaN thin film is deposited on Sapphire substrate by MOCVD. SAW velocity is measured with tile center frequency by HP8753C. Center frequency is 266.52 MHz and SAW velocity is 5330㎧ when wavelength was 20 Um. insertion loss, Q factor and side love attenuation is 41.265 dB, 257.41 and over 23 dB. k'i is calculated from tile measured data. k2'is from 1 % to 4 %. TCF is -61.817pp/m/$^{\circ}C$.

  • PDF

Implantable and Flexible GaN LED for Biomedical Applications

  • 이건재
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.17.1-17.1
    • /
    • 2011
  • Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as a type of implantable LED biosensor and as a therapy tool.

  • PDF

HVPE 법으로 사파이어 기판 위에 성장한 후막 GaN의 특성 (Properties of thick-film GaN on sapphire substrates by HVPE method)

  • 이영주;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.37-39
    • /
    • 1996
  • A hydride vapor phase epitaxy (HVPE) method was performed to prepare the GaN thick-films on c-plane sapphire substrates. The full-width at half maximum of double crystal X-ray rocking curve from 350${\mu}{\textrm}{m}$ thick GaN was 576 arcsecond. The photo- luminescence spectrum measured (at room temperature) show the narrow bound exciton(I$_2$) line and weak donor-acceptor pair recombination peak, however, there was not observed deep donor-acceptor pare recombination indicate the GaN crystals prepared in this study are of high purity and high crystalline quality.

  • PDF

고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구 (Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors)

  • 이호중;조준형;차호영
    • 대한전자공학회논문지SD
    • /
    • 제48권12호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 논문에서는 이차원 소자 시뮬레이션을 활용하여 주어진 게이트-드레인 간격에서 AlGaN/GaN-on-Si HEMT (high electron mobility transistor) 의 고항복전압 구현을 위한 게이트 전계판의 최적화 구조를 제안하였다. 게이트 전계판 구조를 도입하여 게이트 모서리의 전계를 감소시켜 항복전압을 크게 증가시킬 수 있음을 확인 하였으며, 이때 전계판의 길이와 절연막의 두께에 따라 게이트 모서리와 전계판 끝단에서 전계분포의 변화를 분석하였다. 최적화를 위하여 시뮬레이션을 수행한 결과, 1 ${\mu}m$ 정도의 짧은 게이트 전계판으로도 효과적으로 게이트 모서리의 전계를 감소시킬 수 있으며 전계판의 길이가 너무 길어지면 전계판과 드레인 사이의 남은 길이가 일정 수준 이하로 감소되어 오히려 항복전압이 급격하게 감소함을 보였다. 전 계판의 길이가 1 ${\mu}m$ 일 때 최대 항복전압을 얻었으며, 게이트 전계판의 길이를 1 ${\mu}m$로 고정하고 $SiN_x$ 박막의 두께를 변화시켜본 결과 게이트 모서리와 전계판 끝단에서의 전계가 균형을 이루면서 항복전압을 최대로 할 수 있는 최적의 $SiN_x$ 박막 두께는 200~300 nm 인 것으로 나타났다.

A Study of the Optimal Process Conditions of AZO:H2 Thin Film for Maximization of the Transmittance of a Blue GaN Light-Emitting Diode with a Wavelength of 470 nm

  • Hwang, Seung-Taek;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.279-284
    • /
    • 2010
  • This study has been carried out to determine the optimal process conditions of $AZO:H_2$ thin films for the maximization of the transmittance of a blue GaN light-emitting diode (LED) with a wavelength of 470 nm. The Al-doped zinc oxide $(AZO):H_2$ thin films were deposited on a sapphire substrate by radio-frequency magnetron sputtering system with varying substrate temperatures, working pressures and annealing temperatures temperature, working pressure and annealing imposed on a AZO (2wt% $Al_2O_3$) ceramic target. The effect of these variables was investigated in order to improve the light extraction efficiency of the LED. As a result, the (002)-oriented peak was found in all the $AZO:H_2$ thin films. The lowest resistivity and the best transmittance at a wavelength of 470 nm was found to be $4.774\;{\times}\;10^{-4}\;{\Omega}cm$ and 92% at a substrate temperature of $500^{\circ}C$, working pressure of 7 mTorr and annealing temperature of $400^{\circ}C$. The transmittance of the $AZO:H_2$ thin film for the Blue GaN LED was improved by approximately 13% relative to that of a ITO thin film (T = 79%).

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • 공보현;조형균;송근만;윤대호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

GaN 완충층 두께가 GaN 에피층의 특성에 미치는 영향 (Effects of GaN Buffer Layer Thickness on Characteristics of GaN Epilayer)

  • 조용석;고의관;박용주;김은규;황성민;임시종;변동진
    • 한국재료학회지
    • /
    • 제11권7호
    • /
    • pp.575-579
    • /
    • 2001
  • Metal organic chemical vapor deposition (MOCVB)법을 사용하여 sapphire (0001) 기판 위에 GaN 환충층을 성장하고, 그 위에 GaN 에피층을 성장하였다. GaN 완충층은 55$0^{\circ}C$에서 약 26 nm에서 130 nm까지 각각 다른 두께로 성장하였고, GaN 에피층은 110$0^{\circ}C$에서 약 4 $\mu\textrm{m}$의 두께로 성장하였다. GaN 완충층 성장 후 atomic force microscopy (AFM)으로 표면 형상을 측정하였다. GaN 완충층의 두께가 두꺼워질수록 GaN 에피층의 표면이 매끈해지는 것을 scanning electron microscopy (SEM)으로 관찰하였다. 이것으로 GaN 에피층의 표면은 완충층의 두께와 표면 거칠기와 관계가 있다는 것을 알 수 있었다. GaN 에피층의 결정학적 특성을 double crystal X-ray diffraction (DCXRD)와 Raman spectroscopy로 측정하였다. 성장된 GaN 에퍼층의 광학적 특성을 photoluminescence (PL)로 조사한 결과 두께가 두꺼운 완충층 위에 성장된 에퍼층의 결정성이 더 좋은 반면, 내부 잔류응력은 증가하는 결과를 보였다. 이러한 사실들로부터 완충층의 두께가 두꺼워짐에 따라 내부 자유에너지가 감소하여 에피층 성장시 측면성장을 도와 표면이 매끈해지고, 결정성이 좋아졌다.

  • PDF

Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상 (Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film)

  • 정상근;김윤겸;신현길
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Observation of Unusual Structural Phase Transition in $VO_2$ Thin Film on GaN Substrate

  • 양형우;손정인;차승남;김종민;강대준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.573-573
    • /
    • 2012
  • High quality $VO_2$ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The $VO_2$ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between $VO_2$ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant $VO_2$ thin films.

  • PDF

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer

  • Li, Meng;Shin, Geon-Ho;Lee, Hi-Deok;Jun, Dong-Hwan;Oh, Jungwoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.253-256
    • /
    • 2017
  • A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.