Browse > Article
http://dx.doi.org/10.4313/TEEM.2010.11.6.279

A Study of the Optimal Process Conditions of AZO:H2 Thin Film for Maximization of the Transmittance of a Blue GaN Light-Emitting Diode with a Wavelength of 470 nm  

Hwang, Seung-Taek (School of Electrical Information Engineering, Wonkwang University)
Park, Choon-Bae (School of Electrical Information Engineering, Wonkwang University)
Hoang, Geun-C. (Department of Semiconductor and Display, Wonkwang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.11, no.6, 2010 , pp. 279-284 More about this Journal
Abstract
This study has been carried out to determine the optimal process conditions of $AZO:H_2$ thin films for the maximization of the transmittance of a blue GaN light-emitting diode (LED) with a wavelength of 470 nm. The Al-doped zinc oxide $(AZO):H_2$ thin films were deposited on a sapphire substrate by radio-frequency magnetron sputtering system with varying substrate temperatures, working pressures and annealing temperatures temperature, working pressure and annealing imposed on a AZO (2wt% $Al_2O_3$) ceramic target. The effect of these variables was investigated in order to improve the light extraction efficiency of the LED. As a result, the (002)-oriented peak was found in all the $AZO:H_2$ thin films. The lowest resistivity and the best transmittance at a wavelength of 470 nm was found to be $4.774\;{\times}\;10^{-4}\;{\Omega}cm$ and 92% at a substrate temperature of $500^{\circ}C$, working pressure of 7 mTorr and annealing temperature of $400^{\circ}C$. The transmittance of the $AZO:H_2$ thin film for the Blue GaN LED was improved by approximately 13% relative to that of a ITO thin film (T = 79%).
Keywords
Optimal process conditions; Al-doped zinc oxide: $H_2$ film; Blue GaN light-emitting diode; 470 nm Wavelength;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003) p. 171.
2 P. Canhola, N, Martins, L. Raniero, S. Pereira, E. Fortunato, I. Ferreira, and R. Martins, Thin Solid Films 487, 271 (2005) [DOI: 10.1016/j.tsf.2005.01.078].   DOI   ScienceOn
3 M. K. Lee, C. L. Ho, and P. C. Chen, IEEE Photon. Technol. Lett. 20, 252 (2008) [DOI: 10.1109/LPT.2007.913652].   DOI   ScienceOn
4 J. N. Duenow, T. A. Gessert, D. M. Wood, D. L. Young, and T. J. Coutts, J. Non-Crystal. Solids. 354, 2787-2790 (2008) [DOI: 10.1016/j.jnoncrysol.2007.10.070].   DOI   ScienceOn
5 K. Ellmer, J. Phys. D: Appl. Phys. 33, R17 (2000) [DOI: 10.1088/0022-3727/33/4/201].   DOI   ScienceOn
6 J. Hong, H. Paik, H. Hwnag, S. Lee, A. J. Demello, and K. No, Phys. Status Solidi. A: Appl. Mater. 206, 697 (2009) [DOI: 10.1002/pssa.200824291].   DOI   ScienceOn
7 E. Krikorian and R. J. Sneed, Astrophys. Space Sci. 65, 129 (1979) [DOI: 10.1007/BF00643495].   DOI
8 C. Jeong, H.S. Kim, D.R. Chang and K. Kamisako, J. Appl. Phys. 47, 5656-5658 (2008)   DOI
9 Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, and S. M. Huang, Solid-State Electron. 53, 1149 (2009) [DOI:10.1016/j.sse.2009.07.006].   DOI   ScienceOn
10 S. T. Hwang and C. B. Park, Trans. Electr. Electron. Mater. 11, 81 (2010) [DOI: 10.4313/TEEM.2010.11.2.081]   DOI   ScienceOn
11 S. N. Bai and T. Y. Tseng, J. Mater. Sci.: Mater. Electron. 20, 253-256 (2009) [DOI: 10.1007/s10854-008-9712-3].   DOI
12 J. P. Lin and J. M. Wu, Appl. Phys. Lett. 92, 134103 (2008) [DOI: 10.1063/1.2905279].   DOI   ScienceOn
13 C. C. Wang and L. W. Zhang, Phys. Rev. B 74, 024106 (2006) [DOI: 10.1103/PhysRevB.74.024106].   DOI   ScienceOn
14 Y. H. Jeong, H. Chen, H. J. Jin, and C. B. Park, J. KIEEME, 22, 320 (2009)
15 E. Burstein, Phys. Rev. B 93, 632 (1954) [DOI: 10.1103/Phys-Rev.93.632].   DOI