• Title/Summary/Keyword: GaN MMIC

Search Result 49, Processing Time 0.022 seconds

The Transmission Characteristics Analysis of Plastic-Packaged MMIC Microstrip (플라스틱 실장된 MMIC 마이크로스트립의 전송 특성 해석)

  • 김병남;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.1-6
    • /
    • 1998
  • The dielectric effects of plastic packages on GaAs($\varepsilon$$_{r}$=13) MMIC microstrip characteristics are analyzed using the spectral domain method (SDM). As being packaged by typical FR-4 composites ($\varepsilon$$_{r}$=14.2) for PCB substrates and plastic packages, the characteristic impedance is reduced by about 6 %, but the effective dielectric constant is increased by 13 % from those of bare microstrip, respectively. The parasitic effects of the packaging materials can greatly degrade the performance of the packaged MMIC. We also calculated the optimum microstrip width, which maintains the 50 $\Omega$ matching condition after plastic packaging. These calculated results can be used to optimize the plastic packages, and extend the application ranges for low cost MMIC production.n.

  • PDF

6-GHz-to-18-GHz AlGaN/GaN Cascaded Nonuniform Distributed Power Amplifier MMIC Using Load Modulation of Increased Series Gate Capacitance

  • Shin, Dong-Hwan;Yom, In-Bok;Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.737-745
    • /
    • 2017
  • A 6-GHz-to-18-GHz monolithic nonuniform distributed power amplifier has been designed using the load modulation of increased series gate capacitance. This amplifier was implemented using a $0.25-{\mu}m$ AlGaN/GaN HEMT process on a SiC substrate. With the proposed load modulation, we enhanced the amplifier's simulated performance by 4.8 dB in output power, and by 13.1% in power-added efficiency (PAE) at the upper limit of the bandwidth, compared with an amplifier with uniform gate coupling capacitors. Under the pulse-mode condition of a $100-{\mu}s$ pulse period and a 10% duty cycle, the fabricated power amplifier showed a saturated output power of 39.5 dBm (9 W) to 40.4 dBm (11 W) with an associated PAE of 17% to 22%, and input/output return losses of more than 10 dB within 6 GHz to 18 GHz.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

Highly Linear 2-Stage Doherty Power Amplifier Using GaN MMIC

  • Jee, Seunghoon;Lee, Juyeon;Kim, Seokhyeon;Park, Yunsik;Kim, Bumman
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • A power amplifier (PA) for a femto-cell base station should be highly efficient, linear and small. The efficiency for amplification of a high peak-to-average power ratio (PAPR) signal was improved by designing an asymmetric Doherty PA (DPA). The linearity was improved by applying third-order inter-modulation (IM3) cancellation method. A small size is achieved by designing the DPA using GaN MMIC process. The implemented 2-stage DPA delivers a power-added efficiency (PAE) of 38.6% and a gain of 33.4 dB with an average power of 34.2 dBm for a 7.2 dB PAPR 10 MHz bandwidth LTE signal at 2.14 GHz.

SSPA Development of 100W Class in Ka-band (Ka대역 100 W급 SSPA 개발)

  • Seo, Mihui;Jeong, Hae-Chang;Na, Kyoung-Il;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.129-135
    • /
    • 2022
  • In this paper, a 100 W SSPA in Ka-band was developed by combining 16 GaN MMICs which were 10 W amplifiers, respectively. The gate voltage of SSPA was controlled to minimize the effect of SSPA noise on the receiver during the receiving time. And the transmit power could be reduced about 20 dB to prevent the receiver from being saturated by a large signal from a nearby target. At 10%, 40% duty rato, the peak power and the power efficiency at center frequency were measured 52.4 dBm, 19.2%, and 51.6 dBm, 16.6% respectively.

2.6 GHz GaN-HEMT Power Amplifier MMIC for LTE Small-Cell Applications

  • Lim, Wonseob;Lee, Hwiseob;Kang, Hyunuk;Lee, Wooseok;Lee, Kang-Yoon;Hwang, Keum Cheol;Yang, Youngoo;Park, Cheon-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.339-345
    • /
    • 2016
  • This paper presents a two-stage power amplifier MMIC using a $0.4{\mu}m$ GaN-HEMT process. The two-stage structure provides high gain and compact circuit size using an integrated inter-stage matching network. The size and loss of the inter-stage matching network can be reduced by including bond wires as part of the matching network. The two-stage power amplifier MMIC was fabricated with a chip size of $2.0{\times}1.9mm^2$ and was mounted on a $4{\times}4$ QFN carrier for evaluation. Using a downlink LTE signal with a PAPR of 6.5 dB and a channel bandwidth of 10 MHz for the 2.6 GHz band, the power amplifier MMIC exhibited a gain of 30 dB, a drain efficiency of 32%, and an ACLR of -31.4 dBc at an average output power of 36 dBm. Using two power amplifier MMICs for the carrier and peaking amplifiers, a Doherty power amplifier was designed and implemented. At a 6 dB back-off output power level of 39 dBm, a gain of 24.7 dB and a drain efficiency of 43.5% were achieved.

Design and Fabrication of 25 W Ka-Band SSPA Based on GaN HPA MMICs (GaN HPA MMIC 기반 Ka 대역 25 W SSPA 설계 및 제작)

  • Ji, Hong-gu;Noh, Youn-sub;Choi, Youn-ho;Kwak, Chang-soo;Youm, In-bok;Seo, In-jong;Park, Hyung-jin;Jo, In-ho;Nam, Byung-chang;Kong, Dong-uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1083-1090
    • /
    • 2015
  • We designed and manufactured Ka-band SSPA include drive amplifier and high power amplifier MMICs by $0.15{\mu}m$ GaN commercial process. Also, we fabricated main components micro-strip line to WR28 waveguide transition and WR28 wave guide power combiner for Ka-band SSPA. This Ka-band SSPA shows saturated output power 44.2 dBm, power added efficiency 16.6 % and power gain 39.2 dB at 29~31 GHz frequency band.

A 6-16 GHz GaN Distributed Power Amplifier MMIC Using Self-bias

  • Park, Hongjong;Lee, Wonho;Jung, Joonho;Choi, Kwangseok;Kim, Jaeduk;Lee, Wangyong;Lee, Changhoon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.105-107
    • /
    • 2017
  • The self-biasing circuit through a feedback resistor is applied to a gallium nitride (GaN) distributed power amplifier (PA) monolithic microwave circuit (MMIC). The self-biasing circuit is a useful scheme for biasing depletion-mode compound semiconductor devices with a negative gate bias voltage, and is widely used for common source amplifiers. However, the self-biasing circuit is rarely used for PAs, because the large DC power dissipation of the feedback resistor results in the degradation of output power and power efficiency. In this study, the feasibility of applying a self-biasing circuit through a feedback resistor to a GaN PA MMIC is examined by using the high operation voltage of GaN high-electron mobility transistors. The measured results of the proposed GaN PA are the average output power of 41.1 dBm and the average power added efficiency of 12.2% over the 6-16 GHz band.

Single-bias GaAs MMIC single-ended mixer for cellular phone application (Cellular phone용 단일 전원 MMIC single-ended 주파수 혼합기 개발)

  • 강현일;이상은;오재응;오승건;곽명현;마동성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.14-23
    • /
    • 1997
  • An MMIC downconverting mixer for cellular phone application has been successfully developed using an MMIC process including $1 \mu\textrm{m}$ ion implanted gaAs MESFET and passive lumped elements consisting of spiral inductor, $Si_3N_4$ MIM capacitor and NiCr resistor. The configuration of the mixer presented in this paper is single-ended dual-gate FET mixer with common-source self-bias circuits for single power supply operation. The dimension of the fabricated circuit is $1.4 mm \times 1.03 mm $ including all input matching circuits and a mixing circuit. The conversion gian and noise figure of the mixer at LO powr of 0 dBm are 5.5dB and 19dB, respectively. The two-tone IM3 characteristics are also measured, showing -60dBc at RF power of -30dBm. Allisolations between each port show better than 20dB.

  • PDF