• Title/Summary/Keyword: GaAs Monolithic Microwave Integrated Circuit(MMIC)

Search Result 45, Processing Time 0.026 seconds

Q-band MMIC Driver and Power Amplifiers for Wideband wireless Multimedia (Q-band 광대역 무선 멀티미디어용 MMIC구동 및 전력증폭기)

  • 강동민;이진희;윤형섭;심재엽;이경호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.167-170
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) driver and power amplifiers for WLAN are presented using 0.2${\mu}{\textrm}{m}$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT). In each stage of the MMIC DA, a negative feedback is used for both broadband and good stability. The MMIC PA has employed a balanced configuration to overcome these difficulties and achieve high power with low VSWR over a wide frequency range. In the MMIC DA, the measurement results arc achieved as an input return loss under -4dB, an output return loss under -l0dB, a gain of 14dB, and a PldB of 17dB at C-band(36~ 44GHz). The chip size is 28mm$\times$1.3mm. The developed MMIC PA has the l0dB linear gain over 360Hz to 420Hz band and 22dBm PldB performance at 400Hz. The size of fabricated MMIC PA is 4mm x3mm. These results closely match with design results. This MMIC DA Sl PA will be used as the unit cells to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

Design of Absorptive Type SPST MMIC Switch for MSM of Satellite Communication (위성통신용 MSM을 위한 흡수형 SPST MMIC 스위치의 설계 및 제작)

  • Yom In-Bok;Ryu Keun-Kwan;Shin Dong-Hwan;Lee Moon-Que;Oh Il-Duck;Oh Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.989-994
    • /
    • 2005
  • A MMIC(Monolithic Microwave Integrated Circuit) switch chip using InGaAs/GaAs p-HEMT process has been designed for MSM(Microwave Switch Matrix) of satellite communication system. An absorptive type MMIC switch is adopted for good reflection coefficients performances of input and output ports at both on and off states. And, a quarter wavelength impedance transformer is realized with lumped elements of MIM capacitor and spiral inductor for 3 GHz band to reduce the chip size. This MMIC switch covers the frequency range of $3.2\~3.6\;GHz$. According to the on-wafer measurement, the fabricated MMIC switch with miniature size of $1.6\;mm{\times}1.3\;mm$ demonstrates insertion loss below 2 dB and isolation above 56.8 dB, and the performance coincides with simulation results.

Epitaxial Layer Design for High Performance GaAs pHEMT SPDT MMIC Switches

  • Oh, Jung-Hun;Mun, Jae-Kyoung;Rhee, Jin-Koo;Kim, Sam-Dong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.342-344
    • /
    • 2009
  • From a hydrodynamic device simulation for the pseudomorphic high electron mobility transistors (pHEMTs), we observe an increase of maximum extrinsic transconductance and a decrease of source-drain capacitances. This gives rise to an enhancement of the switching speed and isolation characteristics as the upper-to-lower planar-doping ratios (UTLPDR) increase. On the basis of simulation results, we fabricate single-pole-double-throw transmitter/receiver monolithic microwave integrated circuit (MMIC) switches with the pHEMTs of two different UTLPDRs (4:1 and 1:2). The MMIC switch with a 4:1 UTLPDR shows about 2.9 dB higher isolation and approximately 2.5 times faster switching speed than those with a 1:2 UTLPDR.

  • PDF

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

2-6 GHz GaN HEMT Power Amplifier MMIC with Bridged-T All-Pass Filters and Output-Reactance-Compensation Shorted Stubs

  • Lee, Sang-Kyung;Bae, Kyung-Tae;Kim, Dong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.312-318
    • /
    • 2016
  • This paper presents a 2-6 GHz GaN HEMT power amplifier monolithic microwave integrated circuit (MMIC) with bridged-T all-pass filters and output-reactance-compensation shorted stubs using the $0.25{\mu}m$ GaN HEMT foundry process that is developed by WIN Semiconductors, Inc. The bridged-T filter is modified to mitigate the bandwidth degradation of impedance matching due to the inherent channel resistance of the transistor, and the shorted stub with a bypass capacitor minimizes the output reactance of the transistor to ease wideband load impedance matching for maximum output power. The fabricated power amplifier MMIC shows a flat linear gain of 20 dB or more, an average output power of 40.1 dBm and a power-added efficiency of 19-26 % in 2 to 6 GHz, which is very useful in applications such as communication jammers and electronic warfare systems.

The Study on Highly Miniaturized Active 90°C Phase Difference Power Divider and Combiner for Application to Wireless Communication (무선 통신 시스템 응용을 위한 초소형화된 능동형 90°C 위상차 전력 분배기와 결합기에 관한 연구)

  • Park, Young-Bae;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.144-152
    • /
    • 2009
  • This paper propose highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner for application to wireless communication system. The conventional passive $90^{\circ}C$ power divider and combiner cannot be integrated on MMIC because of their very large circuit size. Therefore, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner are required for a development of highly integrated MMIC. In this paper, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner employing InGaAs/GaAs HBT were designed, fabricated on GaAs substrate. According to the results, the circuit size of fabricated active $90^{\circ}C$ phase difference power divider and combiner were $1.67{\times}0.87$ mm and $2.42{\times}1.05$ mm, respectively, which were 31.6% and 2.2% of the size of conventional passive branch-line coupler. The output gain division characteristic of proposed divider circuit showed 8.4 dB and 7.9 dB respectively, and output phase difference characteristic showed $-89.3^{\circ}C$. The output gain coupling characteristic of proposed combiner circuit showed 9.4 dB and 10.5 dB respectively, and output phase difference characteristic showed $-92.6^{\circ}C$. The highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner exhibited good RF performances compared with the conventional passive branch-line coupler.

High Performance Ku-band 2W MMIC Power Amplifier for Satellite Communications (위성 통신 시스템 응용을 위한 우수한 성능의 Ku 대역 2W MMIC 전력증폭기)

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2697-2702
    • /
    • 2014
  • In this paper, we demonstrated a Ku-band 2W MMIC power amplifier for satellite communication applications. The device technology used relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) of Wireless Information Networking (WIN) Semiconductor foundry. The 2W MMIC power amplifier has gain of over 29 dB and saturation output power of over 33.4 dBm in the frequency range of 13.75 ~ 14.5 GHz. Power added efficiency (PAE) is a 29 %. To our knowledge, this is the highest power added efficiency reported for any commercial GaAs-based 2W MMIC power amplifier in the Ku-band.

A 77 GHz mHEMT MMIC Chip Set for Automotive Radar Systems

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Lee, Jin-Hee;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • A monolithic microwave integrated circuit (MMIC) chip set consisting of a power amplifier, a driver amplifier, and a frequency doubler has been developed for automotive radar systems at 77 GHz. The chip set was fabricated using a 0.15 ${\mu}$ gate-length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (mHEMT) process based on a 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20 dB from 76 to 77 GHz with 15.5 dBm output power. The chip size is 2mm${\times}$ 2mm. The driver amplifier exhibited a gain of 23 dB over a 76 to 77 GHz band with an output power of 13 dBm. The chip size is 2.1mm${\times}$ 2mm. The frequency doubler achieved an output power of -6 dBm at 76.5 GHz with a conversion gain of -16 dB for an input power of 10 dBm and a 38.25 GHz input frequency. The chip size is 1.2mm ${\times}$ 1.2mm. This MMIC chip set is suitable for the 77 GHz automotive radar systems and related applications in a W-band.

  • PDF

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.

Design and Fabrication of Ultra-High-Speed Low-Noise MMIC Preamplifier for a 10Gbps Optical Receiver (10Gb/s 광수신기용 초고속 저잡음 MMIC 전치증폭기 설계 및 제작)

  • Yang, Gwang-Jin;Baek, Jeong-Gi;Hong, Seon-Ui;Lee, Jin-Hui;Yun, Jeong-Seop;Maeng, Seong-Jae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.34-38
    • /
    • 2000
  • This paper describes design, fabrication, and performance of an ultra-high-speed and low-noise MMIC (Monolithic Microwave Integrated Circuit) preamplifier for a 10 Gb/s optical receiver. The transimpedance type 3-stage MMIC preamplifier for ultra-high-speed and low-noise was designed using an AlGaAs/InGaAs/GaAs P-HEMTs(Pseudomorphic High Electron Mobility Transistors) with 0.15${\mu}{\textrm}{m}$ length T-shaped gate. To obtain broadband characteristics, we used the inductor peaking technique, and the gate width was optimized for low noise performance. Measurements reveal that the fabricated preamplifier has the high transimpedance gain of 60 ㏈Ω and 9.15 ㎓ bandwidth with the noise figure of less than 3.9 ㏈.

  • PDF