• Title/Summary/Keyword: GaAs MMIC power amplifier

Search Result 47, Processing Time 0.026 seconds

Design of MMIC 2 Stage Power amplifiers for 35 ㎓ (35 ㎓ MMIC 2단 전력 증폭기 설계)

  • 이일형;채연식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.637-640
    • /
    • 1998
  • A 35 ㎓ GaAs MMIC power amplifier was designed using a monolithic technology with AlGaAs/InGaAs/GaAs power PM-HEMTs, rectangualr spiral inductors and Si3N4 MIM capacitors. The GaAs power MESFETs in the input and output stages have total gate widths of 120 um and 320 um, respectively. Total S21 gain of 10.82dB and S11 of -16.26 dB were obtained from the designed MMIC power amplifier at 35 ㎓. And the chip size of the MMIC amplifier was 1.4$\times$0.8 $\textrm{mm}^2$

  • PDF

Design & Fabrication of an InGaP/GaAs HBT MMIC Power Amplifier for IMT-2000 Handsets (IMT-2000 단말기용 InGaP/GaAs HBT MMIC 전력증폭기 설계 및 제작)

  • 채규성;김성일;이경호;김창우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.902-911
    • /
    • 2003
  • Using InGaP/GaAs HBT power cells with a 2.0${\times}$20$\mu\textrm{m}$$^2$ emitter area of a unit HBT, a two stage MMIC power amplifier has been developed for IMT-2000 handsets. An active-bias circuit has been used for temperature compensation and reduction in the idling current. Fitting on measured S-parameters of the HBT cells, circuit elements of HBT's nonlinear equivalent model have been extracted. The matching circuits have been designed basically with the extracted model. A two stage HBT MMIC power amplifier fabricated using ETRI's HBT process. The power amplifier produces an 1-㏈ compressed output power(P$\_$l-㏈/) of 28.4 ㏈m with 31% power added efficiency(PAE) and 23-㏈ power gain at 1.95 GHz in on-wafer measurement. Also, the power amplifier produces a 26 ㏈m output power, 28% PAE and a 22.3-㏈ power gain with a -40 ㏈c ACPR at a 3.84 ㎒ off-center frequency in COB measurement.quency in COB measurement.

Studies on the Design and Fabrication of MMIC Power Amplifier for X-band (X-band용 MMIC 전력증폭기의 설계 및 제작에 관한 연구)

  • 이성대;이호준;이응호;윤용순;박현식;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • In this paper, we have designed and fabricated a MMIC power amplifier for X-band using AlGaAs/InGaAs/GaAs PM-HEMTs and passive devices such as Ti thin film resistors, rectangular spiral inductors and MIM capacitors. The fabricated MMIC power amplifier for X-band shows that S/ sub 21/ and S$_{11}$ are 14.804 ㏈ and -29.577 at 8.18 GHz, respectively. The chip size is 1.86$\times$1.29 $\textrm{mm}^2$.>.>.

  • PDF

Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits (차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향)

  • Lee, S.H.;Lim, J.W.;Kang, D.M.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

Design and Fabrication of MMIC Amplifier for BWLL (BWLL용 MMIC 증폭기의 설계 및 제작)

  • 배현철;윤용순;박현창;박형무;이진구
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.323-330
    • /
    • 2002
  • In this paper, we have designed and fabricated an BWLL MMIC amplifier using GaAs PHEMT devices. We have optimized power divider/combiner size for small size of MMIC amplifier Using 0.2 ${\mu}$m AIGaAs/lnGaAs/GaAs PHEMT devices, the two stave MMIC amplifier has demonstrated a S$_{21}$ gain of 8.7 ㏈ with input/output return losses of lower than -10 ㏈ at 26.7 GHz. The size of this chip is 4.11 ${\times}$ 2.66 $\textrm{mm}^2$.

High Performance Ku-band 2W MMIC Power Amplifier for Satellite Communications (위성 통신 시스템 응용을 위한 우수한 성능의 Ku 대역 2W MMIC 전력증폭기)

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2697-2702
    • /
    • 2014
  • In this paper, we demonstrated a Ku-band 2W MMIC power amplifier for satellite communication applications. The device technology used relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) of Wireless Information Networking (WIN) Semiconductor foundry. The 2W MMIC power amplifier has gain of over 29 dB and saturation output power of over 33.4 dBm in the frequency range of 13.75 ~ 14.5 GHz. Power added efficiency (PAE) is a 29 %. To our knowledge, this is the highest power added efficiency reported for any commercial GaAs-based 2W MMIC power amplifier in the Ku-band.

PHEMT MMIC Broad-Band Power Amplifier for LMDS (Ka 대역 광대역 MMIC 전력증폭기)

  • 백경식;김영기;맹성재;이진희;박철순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.177-180
    • /
    • 1999
  • A two-stage monolithic microwave integrated circuits (MMIC) broad-band power amplifier with AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been developed for the up-link and down-link applications for local multipoint distribution systems (LMDS) in the frequency range of 24~28㎓. The amplifier has a small signal gain of 18.6㏈ at 24.5㎓ and 16.7㏈ at 27.1㎓. It achieved output powers of 19.8㏈m with PAE of 19.8% at 24.5㎓ and 18.8㏈m at 27.1㎓.

  • PDF

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.

FEM MMIC Development based on X-Band GaAs for Satellite Terminals of Phase Array Structure (위상배열구조 위성단말용 X대역 GaAs 기반 FEM MMIC 국산화 개발)

  • Younghoon Kim;Sanghun Lee;Byungchul Park;Sungjin Mun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.121-127
    • /
    • 2024
  • In this paper, FEM (Front-End Module) MMIC, a key component for the application of the satellite communication terminal transmission and reception module of the multi-phase array structure, was designed and verified as a single chip by designing the Power Amplifier (PA) and the Low Noise Amplifier (LNA). It was manufactured using the GaAs PP10 (100nm) process, a compound semiconductor process from Win-semiconductors, and the operating frequency band of 7.2-10.5GHz operation, output 1W, and noise index of 1.5dB or less were secured using a dedicated test board. The developed FEM MMIC can be used as a single chip, and the components PA and LNA can also be used as each device. The developed device will be used in various applications of Minsu/Gunsu using the X band and the localization of overseas parts.

The Study on the design and implementation of a X-band 25W Power Amplifier Module using GaAs MMIC (GaAs MMIC를 이용한 X대역용 25W급 전력증폭모듈의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Bong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1311-1316
    • /
    • 2014
  • To be used in a transmitter of a satellite transponder of this paper, X band 25W power amplifier module, a part constituting of high-power amplifier is transmitted to the equipment for transmitting to geostationary communications satellites(36,000Km distance). PAM consisted a total of four power amplifier module has a high output characteristic of the high-output amplifier is used in the ground station. Used in conjunction with the structured type power amplifier module is composed of Serial Combining Structure. This PAM(Power Amplifier Module) configured by combining the circuit with the power amplifier, 10 MMIC chips and the Al2O3 thin film substrate using a Hybrid Technique of power amplifier module, was implemented at X band PAM(Power Amplifier Module) of 25W grade.