• Title/Summary/Keyword: Ga-As laser

Search Result 301, Processing Time 0.03 seconds

Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

  • Choi, Eun-Jeong;Yim, Ju-Young;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods: Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 $J/cm^2$. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results: At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 $J/cm^2$ (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 $J/cm^2$ energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 $J/cm^2$ energy fluency than in the control. Conclusions: The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots (InAs/GaAs 양자점의 발광특성에 대한 InGaAs 캡층의 영향)

  • Kwon, Se Ra;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.342-347
    • /
    • 2012
  • The optical properties of InAs quantum dots (QDs) grown on a GaAs substrates by migration enhanced molecular beam epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The luminescence properties of InAs/GaAs QDs have been studied as functions of temperature, excitation laser power, and emission wavelength. The PL peak of InAs QDs capped with $In_{0.15}Ga_{0.85}As$ layer (QD2) measured at 10 K is redshifted about 80 nm compared with that of InAs QDs with no InGaAs layer (QD1). This redshift of QD2 is attributed to the increase in dot size due to the diffusion of In from the InGaAs capping layer. The PL decay times of QD1 and QD2 at 10 K are 1.12 and 1.00 ns taken at the PL peak of 1,117 and 1,197 nm, respectively. The reduced decay time of QD2 can be explained by the improved carrier confinement and enhanced wave function overlap due to increased QD size. The PL decay times for both QD1 and QD2 are independent on the emission wavelength, indicating the uniformity of dot size.

A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers (InGaAs 반도체 박막의 테라헤르쯔(THz) 발생 및 검출 특성 연구)

  • Park, D.W.;Kim, J.S.;Noh, S.K.;Ji, Young-Bin;Jeon, T.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.264-272
    • /
    • 2012
  • In this paper, we report THz generation and detection characteristics investigated by InGaAs semiconductor epilayers, as results of a basic study obtained from the InGaAs-based THz transmitter/receiver (Tx/Rx). High-temperature and low-temperature (LT) grown InGaAs epilayers were prepared by the molecular beam epitaxy technique for the characterization of THz generation and detection, respectively, and the surface emission based on the photo-Dember effect was tried for THz generation. THz wave was generated by irradiation of a Ti:Sapphire fs pulse laser (60 ps/83 MHz), and a LT-GaAs Rx was used for the THz detection. The frequency band shown in the spectral amplitudes Fourier-transformed from the measured current signals was ranging in 0.5~2 THz, and the signal currents were exponentially increased with the Tx beam power. The THz detection characteristics of LT-InGaAs were investigated by using an Rx with dipole (5/20 ${\mu}m$) antenna, and the cutoff frequency was ~2 THz.

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

The EFFECTS OF DENTAL LASER ON PULP FIBROBLAST IN VITRO (치과용 레이저 조사가 배양 치수 섬유모세포에 미치는 영향에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.519-535
    • /
    • 1997
  • The responses of human pulp fibroblastic cells to Ga-As Semi-Conductor-Dens-Bio Laser (Frequency: 5 Hz~10,000 Hz Model: SD-101A RCA, U.SA)) were examined in vitro using pulp fibroblastic cells obtained from the pulp tissue of human tooth. The mitogenic effect of soft laser was assessed by measuring the MTT assay. The morphologic effect for soft laser showed under the scanning and transmission electron microscopy. The results as follows; 1. The mitogenic response of the soft laser was not observed until 4th time of radiation, while the mitogenic response at 4th time increased mitogenic effect by as much as 1.7 fold compared to the control value. 2. The mitogenic response of the soft laser on pulp fibroblast differ from the mitogenic response on other fibroblasts. 3. In scanning electron microscopic study, The microvilli of cell surface increased gradually with width and length after laser radiation, it demonstrate that development of microvilli have close connection with differentiation of cells. 4. Under the transmission electron microscope, The laser-treated cells maintained their elongated shape and a high degree of cellular polarization. The large cell body containing a well developed Golgi complex, a large number of profiles of rough endoplasmic reticulum, and great numbers of mitochondria. 5. The laser-treated cells maintained the long straight bundles of closely apposed microfilaments or individual filaments forming a cross-linked network. These findings suggest that the laser may have important roles in promotion of pulp healing and consequently may be useful for clinical application in pulp regenerative procedures.

  • PDF

Effeects of Low Level Laser Irradiation with 904nm Pulsed Diode Laser on the Extraction Wound (904nm의 펄스형 다이오드 저수준레이저광조사가 발치창에 미치는 효과)

  • 김기석
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.4
    • /
    • pp.301-307
    • /
    • 1998
  • 본 연구에서는 904nm의 다이오드 레이저를 발치창에 조사하여 효과를 분석하교, 동물실험에서 제시된 가설 즉 레이저 광조사가 주위정상조직을 자극하여 창상치유를 촉진하고 진통, 항염증효과가 있는지를 확인하고저 하였다. 먼저 19명의 발치환자에게 발치후 즉시 1분간 평균 14mW의 저수준레이저를 조사하였다. 이들중 8명은 대조군으로서 위조사(sham-irradiation)하였다. 일주일동안 시간경과에 따른 동통의 정도, 진통제의 사용횟수, 진통제 사용기간등을 각각조사하였다. Visual analogue scale로 두근에서 동통의 정도를 비교한 결과 대조군 보다 레이저 조사군에서 동통이 유의하게 감소하였으며, 진통제의 사용횟수가 기간도 레이저조사군에서 유의하게 감소하였다. 이러한 결과로 보아 비록 1분간의 적은 량의 레이저 조사라도 발치후 합병증을 억제하여 동통을 억제하고 치유를 촉진한다고 사료된다.

  • PDF

Widely Tunable Coupled-ring Reflector Laser Diode Consisting of Square Ring Resonators

  • Kim, Su-Hyun;Byun, Young-Tae;Kim, Doo-Gun;Dagli, Nadir;Chung, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-41
    • /
    • 2010
  • We design and fabricate a widely tunable laser diode made of InGaAsP-InP. The diode is monolithically integrated with a wavelength-selective coupled-ring reflector and semiconductor amplifiers. For realization of a compact size device, deeply etched multi-mode interference couplers and square ring resonators composed of total-internal-reflection mirrors are adopted and fabricated using a self-aligned process. It is demonstrated that the laser diode exhibits single mode operation and 16 nm tuning range with side-mode-suppression-ratio exceeding 20 dB.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Enhancing the Performance of InGaN Photoelectrode by Using YAG:Ce3+@ beta-SiALON Phosphor (YAG:Ce3+@ beta-SiALON 형광체를 이용한 InGaN 광전극의 효과적인 물분해)

  • Bae, Hyojung;Lee, Daejang;Cha, An-Na;Ju, Jin-Woo;Moon, Youngboo;Ha, Jun-Seok
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.50-53
    • /
    • 2020
  • GaN based photoelectrode has shown good potential owing to its better chemical stability and tunable bandgap with materials such as InN and AlN. Tunable bandgap allows GaN to make the maximum utilization of solar spectrum, which could improve photoelectrode performance. However, the problems about low photoelectrode performance and photo-corrosion still remain. In this study, we attempt to investigate the photoelectrochemical (PEC) properties of phosphor application to InGaN photoelectrode. Experimental result shows YAG:Ce3+ and beta-SiALON phosphor result in the highest photoelectrode performance of InGaN.