• Title/Summary/Keyword: GTPases

Search Result 26, Processing Time 0.024 seconds

Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen

  • Jae-Hyun Yu;Eun-Yi Moon;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.48-58
    • /
    • 2023
  • Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

Rap Signaling in Normal Lymphocyte Development and Leukemia Genesis

  • Minato, Nagahiro
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.35-40
    • /
    • 2009
  • Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap signaling in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of gene-engineered mice, we have uncovered essential roles of endogenous Rap signaling in normal lymphocyte development of both T- and B-lineage cells. Deregulation of Rap signaling, on the other hand, results in the development of characteristic leukemia in manners highly dependent on the contexts of cell lineages. These results highlight crucial roles of Rap signaling in the physiology and pathology of lymphocyte development.

Small GTPases and formins in mammalian oocyte maturation: cytoskeletal organizers

  • Kwon, So-Jung;Lim, Hyun-Jung J.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The maturation process of mammalian oocytes accompanies an extensive rearrangement of the cytoskeleton and associated proteins. As this process requires a delicate interplay between the cytoskeleton and its regulators, it is often targeted by various external and internal adversaries that affect the congression and/or segregation of chromosomes. Asymmetric cell division in oocytes also requires specific regulators of the cytoskeleton, including formin-2 and small GTPases. Recent literature providing clues regarding how actin filaments and microtubules interact during spindle migration in mouse oocytes are highlighted in this review.

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease (Ras GTPase 및 Ras GTPase activating protein과 사람의 질병)

  • Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1100-1117
    • /
    • 2018
  • The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.

Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry

  • Park, Sang-Youn;Kim, Keon-Young;Kim, Sun-Min;Yu, Young-Seok
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.360-364
    • /
    • 2012
  • Uptake of circulating glucose into the cells happens via the insulin-mediated signalling pathway, which translocates the glucose transporter 4 (GLUT4) vesicles from the intracellular compartment to the plasma membrane. Rab GTPases are involved in this vesicle trafficking, where Rab GTPases-activating proteins (RabGAP) enhance the GTP to GDP hydrolysis. TBC1D4 (AS160) and TBC1D1 are functional RabGAPs in the adipocytes and the skeletonal myocytes, respectively. These proteins contain two phosphotyrosine-binding domains (PTBs) at the amino-terminus of the catalytic RabGAP domain. The second PTB has been shown to interact with the cytoplasmic region of the insulin-regulated aminopeptidase (IRAP) of the GLUT4 vesicle. In this study, we quantitatively measured the ${\sim}{\mu}M$ affinity ($K_D$) between TBC1D4 PTB and IRAP using isothermal titration calorimetry, and further showed that IRAP residues 1-49 are the major region mediating this interaction. We also demonstrated that the IRAP residues 1-15 are necessary but not sufficient for the PTB interaction.

Induction of Myogenic Differentiation in Myoblasts by Electrical Stimulation

  • Je, Hyeon-Jeong;Kim, Min-Gu;Cho, Il-Hoon;Kwon, Hyuck-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • PURPOSE: While electrical stimulation (ES) is known to be a safe and flexible tool in rehabilitation therapy, it has had limited adoption in muscle regeneration. This study was performed to investigate whether ES can induce myogenic differentiation and to clarify the mechanism underlying the effects of ES on myogenic differentiation. METHODS: This study used rat L6 cell lines as myoblasts for myogenic differentiation. Electric stimulation was applied to the cells using a C-Pace EP culture pacer (IonOptix, Westwood, Ma, USA). The gene expressions of myogenic markers were examined using qPCR and immunochemistry. RESULTS: Our study showed that ES increased the thickness and length of myotubes during myogenic differentiation. It was found that ES increased the expression of myogenic markers, such as MyoD and Myogenin, and also activated the fusion of the myoblast cells. In addition, ES suppressed the expression of small GTPases, which can explain why ES promotes myogenic differentiation. CONCLUSION: We found that ES induced myogenic differentiation by suppressing small GTPases, inhibiting cell division. We suggest that ES-based therapies can contribute to the development of safe and efficient muscle regeneration.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability

  • Cho, Hee Jun;Ryu, Ki-Jun;Baek, Kyoung Eun;Lim, Jeewon;Kim, Taeyoung;Song, Chae Yeong;Yoo, Jiyun;Lee, Hee Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1488-1494
    • /
    • 2020
  • Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progression. Here, we show that RhoGDI1 interacts with Cullin 3 (CUL3), a scaffold protein for E3 ubiquitin ligase complexes. Ectopic expression of CUL3 increases the ubiquitination of RhoGDI1. Furthermore, potassium channel tetramerization domain containing 5 (KCTD5) also binds to RhoGDI1 and increases its interaction with CUL3. Ectopic expression of KCTD5 increases the ubiquitination of RhoGDI1, whereas its knockdown by RNA interference has the opposite effect. Depletion of KCTD5 or expression of dominant-negative CUL3 (DN-CUL3) enhances the stability of RhoGDI1. Our findings reveal a previously unknown mechanism for controlling RhoGDI1 degradation that involves a CUL3/KCTD5 ubiquitin ligase complex.

Modulation of Rit Activation by the Alpha Subunit of Go

  • Yang, Chul-Min;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.327-333
    • /
    • 2009
  • Heterotrimeric GTP binding proteins, G-proteins, mediate signal transduction generated by neurotransmitters and hormones. Among G-proteins, Go proteins are the most abundant in brain and classified as a member of Gi family. Ras-like protein in all tissues (Rit), one of the small GTPases, is a member of a Ras superfamily and identified as an important regulator of neuronal differentiation and cell transformation. Recently, we have reported that Rit functioned as a candidate downstream effector for alpha subunit of Go proteins ($Go{\alpha}$) and regulated neurite outgrowth triggered by $Go{\alpha}$ activation. In this study, we showed that the GTPase domain of $Go{\alpha}$ contributed to the direct interaction with Rit. We also demonstrated that $Go{\alpha}$ could lead to an increase of Rit activity suggesting that Rit play a role as a downstream effector of $Go{\alpha}$.

  • PDF