DOI QR코드

DOI QR Code

Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability

  • Cho, Hee Jun (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Ki-Jun (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University) ;
  • Baek, Kyoung Eun (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lim, Jeewon (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Taeyoung (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University) ;
  • Song, Chae Yeong (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University) ;
  • Yoo, Jiyun (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University) ;
  • Lee, Hee Gu (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2020.07.24
  • Accepted : 2020.08.26
  • Published : 2020.10.28

Abstract

Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progression. Here, we show that RhoGDI1 interacts with Cullin 3 (CUL3), a scaffold protein for E3 ubiquitin ligase complexes. Ectopic expression of CUL3 increases the ubiquitination of RhoGDI1. Furthermore, potassium channel tetramerization domain containing 5 (KCTD5) also binds to RhoGDI1 and increases its interaction with CUL3. Ectopic expression of KCTD5 increases the ubiquitination of RhoGDI1, whereas its knockdown by RNA interference has the opposite effect. Depletion of KCTD5 or expression of dominant-negative CUL3 (DN-CUL3) enhances the stability of RhoGDI1. Our findings reveal a previously unknown mechanism for controlling RhoGDI1 degradation that involves a CUL3/KCTD5 ubiquitin ligase complex.

Keywords

References

  1. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  2. Kerscher O, Felberbaum R, Hochstrasser M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22: 159-180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503
  3. Metzger MB, Hristova VA and Weissman AM. 2012. HECT and RING finger families of $E_3$ ubiquitin ligases at a glance. J. Cell Sci. 125: 531-537. https://doi.org/10.1242/jcs.091777
  4. Deshaies RJ. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435-467. https://doi.org/10.1146/annurev.cellbio.15.1.435
  5. Cardozo T, Pagano M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5: 739-751. https://doi.org/10.1038/nrm1471
  6. Genschik P, Sumara I, Lechner E. 2013. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32: 2307-2320. https://doi.org/10.1038/emboj.2013.173
  7. Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6: 9-20. https://doi.org/10.1038/nrm1547
  8. Lydeard JR, Schulman BA, Harper JW. 2013. Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14: 1050-1061. https://doi.org/10.1038/embor.2013.173
  9. Etienne-Manneville S, Hall A. 2002. RhoGTPases in cell biology. Nature 420: 629-635. https://doi.org/10.1038/nature01148
  10. Hodge RG, Ridley AJ. 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17: 496-510. https://doi.org/10.1038/nrm.2016.67
  11. Schmidt A, Hall A. 2002. Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch. Genes Dev. 16: 1587-1609. https://doi.org/10.1101/gad.1003302
  12. Moon SY, Zheng Y. 2003. GTPase-activation proteins in cell regulation. Trends Cell Biol. 13: 13-22. https://doi.org/10.1016/S0962-8924(02)00004-1
  13. Dovas A, Couchman JR.2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390: 1-9. https://doi.org/10.1042/BJ20050104
  14. Olofsson B. 1999. guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11: 545-554. https://doi.org/10.1016/S0898-6568(98)00063-1
  15. Dransart E, Olofsson B, Cherfils J. 2005. RhoGDIs revisited: novel roles in Rho regulation. Traffic 6: 957-966. https://doi.org/10.1111/j.1600-0854.2005.00335.x
  16. Garcia-Mata R, Boulter E, Burridge K. 2011. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12: 493-504. https://doi.org/10.1038/nrm3153
  17. DerMardirossian C, Bokoch GM. 2005. GDIs: Central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15: 356-363. https://doi.org/10.1016/j.tcb.2005.05.001
  18. Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, et al. 1992. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the Cdc42Hs proteins. J. Biol. Chem. 267: 22860-22868. https://doi.org/10.1016/S0021-9258(18)50026-0
  19. Scherle P, Behrens T, Staudt LM. 1993. Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc. Natl. Acad. Sci. USA 90: 7568-7572. https://doi.org/10.1073/pnas.90.16.7568
  20. Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T, Van Aelst L, et al. 1997. RhoGDIgamma: A GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc. Natl. Acad. Sci. USA 94: 4279-4284. https://doi.org/10.1073/pnas.94.9.4279
  21. Harding MA, Theodorescu D. 2010. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer 46: 1252-1259. https://doi.org/10.1016/j.ejca.2010.02.025
  22. Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. 2019. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 8: 1037. https://doi.org/10.3390/cells8091037
  23. Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, et al. 2014 miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 74: 3031-3042. https://doi.org/10.1158/0008-5472.CAN-13-2193
  24. Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, et al. 2002. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis 19: 9-15. https://doi.org/10.1023/A:1013884426692
  25. Wang H, Wang B, Liao Q, An H, Li W, Jin X, et al. 2014. Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma. FEBS Lett. 588: 503-508. https://doi.org/10.1016/j.febslet.2013.12.016
  26. Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY, et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151. https://doi.org/10.1016/j.canlet.2018.01.002
  27. Bayon Y, Trinidad AG, de la Puerta ML, Del Carmen Rodríguez M, Bogetz J, Rojas A, et al. 2008. KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS J. 275: 3900-3910. https://doi.org/10.1111/j.1742-4658.2008.06537.x
  28. Brockmann M, Blomen VA, Nieuwenhuis J, Stickel E, Raaben M, Bleijerveld OB, et al. 2017. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546: 307-311. https://doi.org/10.1038/nature22376
  29. Rivas J, Diaz N, Silva I, Morales D, Lavanderos B, Alvarez A, et al. 2020. KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB J. 34: 7847-7865. https://doi.org/10.1096/fj.201901195RRR
  30. Pasini S, Liu J, Corona C, Peze-Heidsieck E, Shelanski M, Greene LA. 2016. Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of $RhoGDI{\alpha}$. Sci. Rep. 6: 36952. https://doi.org/10.1038/srep36952
  31. Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. 2015. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 6: 36231-36244. https://doi.org/10.18632/oncotarget.4740
  32. Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M. et al. 2010. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12: 390-399. https://doi.org/10.1038/ncb2039
  33. Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, et al. 2017. NF-${\kappa}B$ p65 overexpression promotes bladder cancer cell migration via FBW7-mediated degradation of $RhoGDI{\alpha}$ protein. Neoplasia 19: 672-683. https://doi.org/10.1016/j.neo.2017.06.002
  34. Dai F, Qi Y, Guan W, Meng G, Liu Z, Zhang T, et al. 2019. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis 288: 124-136. https://doi.org/10.1016/j.atherosclerosis.2019.07.010
  35. Olson MF. 2018. GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 9: 203-215. https://doi.org/10.1080/21541248.2016.1218407
  36. Jung H, Yoon SR, Lim J, Cho HJ, Lee HG. 2020. Dysregulation of Rho GTPases in human cancers. Cancers (Basel). 12: 1179. https://doi.org/10.3390/cancers12051179
  37. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. 2005. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603-1609. https://doi.org/10.1126/science.1105718
  38. Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, 2009. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell. 35: 841-855. https://doi.org/10.1016/j.molcel.2009.09.004
  39. Kovacevic I, Sakaue T, Majolee J, Pronk MC, Maekawa M, Geerts D, et al. 2018. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB. J. Cell Biol. 217: 1015-1032. https://doi.org/10.1083/jcb.201606055

Cited by

  1. Regulation of Rho GTPases in the Vasculature by Cullin3-Based E3 Ligase Complexes vol.9, 2020, https://doi.org/10.3389/fcell.2021.680901
  2. Pyrimidine Biosynthetic Enzyme CAD: Its Function, Regulation, and Diagnostic Potential vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910253