Browse > Article
http://dx.doi.org/10.4014/jmb.2007.07033

Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability  

Cho, Hee Jun (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Ki-Jun (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University)
Baek, Kyoung Eun (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lim, Jeewon (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Taeyoung (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University)
Song, Chae Yeong (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University)
Yoo, Jiyun (Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University)
Lee, Hee Gu (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.10, 2020 , pp. 1488-1494 More about this Journal
Abstract
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progression. Here, we show that RhoGDI1 interacts with Cullin 3 (CUL3), a scaffold protein for E3 ubiquitin ligase complexes. Ectopic expression of CUL3 increases the ubiquitination of RhoGDI1. Furthermore, potassium channel tetramerization domain containing 5 (KCTD5) also binds to RhoGDI1 and increases its interaction with CUL3. Ectopic expression of KCTD5 increases the ubiquitination of RhoGDI1, whereas its knockdown by RNA interference has the opposite effect. Depletion of KCTD5 or expression of dominant-negative CUL3 (DN-CUL3) enhances the stability of RhoGDI1. Our findings reveal a previously unknown mechanism for controlling RhoGDI1 degradation that involves a CUL3/KCTD5 ubiquitin ligase complex.
Keywords
RhoGDI1; Rho GTPases; Cullin 3; KCTD5; ubiquitination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Scherle P, Behrens T, Staudt LM. 1993. Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc. Natl. Acad. Sci. USA 90: 7568-7572.   DOI
2 Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T, Van Aelst L, et al. 1997. RhoGDIgamma: A GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc. Natl. Acad. Sci. USA 94: 4279-4284.   DOI
3 Harding MA, Theodorescu D. 2010. RhoGDI signaling provides targets for cancer therapy. Eur. J. Cancer 46: 1252-1259.   DOI
4 Cho HJ, Kim JT, Baek KE, Kim BY, Lee HG. 2019. Regulation of Rho GTPases by RhoGDIs in Human Cancers. Cells 8: 1037.   DOI
5 Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, et al. 2014 miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 74: 3031-3042.   DOI
6 Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, et al. 2002. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin. Exp. Metastasis 19: 9-15.   DOI
7 Wang H, Wang B, Liao Q, An H, Li W, Jin X, et al. 2014. Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma. FEBS Lett. 588: 503-508.   DOI
8 Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY, et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151.   DOI
9 Bayon Y, Trinidad AG, de la Puerta ML, Del Carmen Rodríguez M, Bogetz J, Rojas A, et al. 2008. KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS J. 275: 3900-3910.   DOI
10 Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425-479.   DOI
11 Kerscher O, Felberbaum R, Hochstrasser M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22: 159-180.   DOI
12 Metzger MB, Hristova VA and Weissman AM. 2012. HECT and RING finger families of $E_3$ ubiquitin ligases at a glance. J. Cell Sci. 125: 531-537.   DOI
13 Deshaies RJ. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435-467.   DOI
14 Hodge RG, Ridley AJ. 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17: 496-510.   DOI
15 Cardozo T, Pagano M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5: 739-751.   DOI
16 Genschik P, Sumara I, Lechner E. 2013. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32: 2307-2320.   DOI
17 Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6: 9-20.   DOI
18 Lydeard JR, Schulman BA, Harper JW. 2013. Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14: 1050-1061.   DOI
19 Etienne-Manneville S, Hall A. 2002. RhoGTPases in cell biology. Nature 420: 629-635.   DOI
20 Schmidt A, Hall A. 2002. Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch. Genes Dev. 16: 1587-1609.   DOI
21 Moon SY, Zheng Y. 2003. GTPase-activation proteins in cell regulation. Trends Cell Biol. 13: 13-22.   DOI
22 Dovas A, Couchman JR.2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390: 1-9.   DOI
23 Olofsson B. 1999. guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11: 545-554.   DOI
24 Dransart E, Olofsson B, Cherfils J. 2005. RhoGDIs revisited: novel roles in Rho regulation. Traffic 6: 957-966.   DOI
25 Pasini S, Liu J, Corona C, Peze-Heidsieck E, Shelanski M, Greene LA. 2016. Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of $RhoGDI{\alpha}$. Sci. Rep. 6: 36952.   DOI
26 Garcia-Mata R, Boulter E, Burridge K. 2011. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12: 493-504.   DOI
27 DerMardirossian C, Bokoch GM. 2005. GDIs: Central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15: 356-363.   DOI
28 Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, et al. 1992. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the Cdc42Hs proteins. J. Biol. Chem. 267: 22860-22868.   DOI
29 Brockmann M, Blomen VA, Nieuwenhuis J, Stickel E, Raaben M, Bleijerveld OB, et al. 2017. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546: 307-311.   DOI
30 Rivas J, Diaz N, Silva I, Morales D, Lavanderos B, Alvarez A, et al. 2020. KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis. FASEB J. 34: 7847-7865.   DOI
31 Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. 2015. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 6: 36231-36244.   DOI
32 Olson MF. 2018. GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 9: 203-215.   DOI
33 Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M. et al. 2010. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12: 390-399.   DOI
34 Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, et al. 2017. NF-${\kappa}B$ p65 overexpression promotes bladder cancer cell migration via FBW7-mediated degradation of $RhoGDI{\alpha}$ protein. Neoplasia 19: 672-683.   DOI
35 Dai F, Qi Y, Guan W, Meng G, Liu Z, Zhang T, et al. 2019. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis 288: 124-136.   DOI
36 Jung H, Yoon SR, Lim J, Cho HJ, Lee HG. 2020. Dysregulation of Rho GTPases in human cancers. Cancers (Basel). 12: 1179.   DOI
37 Kovacevic I, Sakaue T, Majolee J, Pronk MC, Maekawa M, Geerts D, et al. 2018. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB. J. Cell Biol. 217: 1015-1032.   DOI
38 Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. 2005. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603-1609.   DOI
39 Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, 2009. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell. 35: 841-855.   DOI