• Title/Summary/Keyword: GNSS technology

Search Result 308, Processing Time 0.024 seconds

Block Correlator for Real-Time GPS L1 Software Receiver (소프트웨어 기반의 실시간 GPS L1 수신기를 위한 블록 상관기)

  • Kim, Tae-Hee;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, a software-based real-time GPS L1 receiver is proposed for the block correlation techniques. Recently various navigation satellite navigation receivers in the environment for the development of more efficient software-based real-time receiver need to be developed. It is composed of components such as signal supplier, signal acquisition, signal tracking, navigation data processing, and navigation solution. They are designed and implemented as component based software for enhancing reusability and modifiability for user to have more flexibility during development of receiver. This paper will describe design, implementation, and verification of the developed realtime software GNSS receiver.

The Study for Position and Signal Power of Antenna on Construction of Korean P.N.T Service System (한국에 적합한 P.N.T 서비스 시스템 구축을 위한 안테나 위치 및 송신출력에 관한 연구)

  • Kim, Jeong-Rok;Gug, Seoung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.80-81
    • /
    • 2012
  • Our society consist of many country's critical infrastructure such as production and distribution of electric power systems, communications technology, tele-communications, financial system, transportation systems when those systems are operated efficiently and normally. Country's critical infrastructure and its application fields of this magnitude rely on more and more P.N.T (Positioning, Navigation. Timing) systems, in which the tele-communications(Timing), financial market(Timing), logistics (Positioning, Navigation, Timing), transportation(Positioning, Navigation. Timing) is shoring. Reliability concerned about the exact position and timing of these critical national infrastructure rely on ability to provide a stable from GPS.

  • PDF

Simulation of GNSS Spoofing Detection Method Using Encrypted Ranging Signal (암호화 신호원을 이용한 위성항법 기만 검출기법 모의)

  • So, Hyoungmin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.394-400
    • /
    • 2016
  • It is well known that the encrypted ranging signal, such as GPS P(Y) code, is immune to spoofing attack. However, in order for users to use the signal, there needs permission from the operator. And also there are many restrictions for use because of security issues. In this paper, a ground reference station equipped with high-gain directional antenna and a user receiver were simulated. In the reference station, the encrypted code can be demodulated from the high-gain signal. And then the code can be used to detect spoofing attack in the user receiver. This paper proposes the spoofing detection method using the encrypted signal and deals with simulation results.

Multiple-Hypothesis RAIM Algorithm with an RRAIM Concept (RRAIM 기법을 활용한 다중 가설 사용자 무결성 감시 알고리듬)

  • Yun, Ho;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • This paper develops and analyzes a new multiple-hypothesis Receiver Autonomous Integrity Monitoring (RAIM) algorithm as a candidate for future standard architecture. The proposed algorithm can handle simultaneous multiple failures as well as a single failure. It uses measurement residuals and satellite observation matrices of several consecutive epochs for Failure Detection and Exclusion (FDE). The proposed algorithm redueces the Minimum Detectable Bias (MDB) via the Relative RAIM (RRAIM) scheme. Simulation results show that the proposed algorithm can detect and filter out multiple failures in tens of meters.

Performance Analysis of Road Lane Recognition using Road Condition Constraint (차로 제한 조건을 이용한 차로 구분 성능 분석)

  • Kang, Woo-Yong;Lee, Eun-Sung;Park, Jae-Ik;Han, Ji-Ae;Hong, Woon-Ki;Kim, Hyun-Soo;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.432-440
    • /
    • 2011
  • This paper focus on lane recognition performance test using a road lane constraint with transport infrastructure information. The constraint is determined through the relation of the drive direction and vehicle position. The road lane constraint sets large limit for first and last lane. To analyze the performance of the proposed method, simulations are carried out. The results show that the lane recognition performance using a constraint is improved 40% at four-lane, 25% at six-lane, 15% at eight-lane.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON GPS HEIGHT DETERMINATION

  • Huang, Yu-Wen;Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.748-751
    • /
    • 2006
  • Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.

  • PDF

Preliminary Results of Surveillance Data Processing for Design of Prototype ADS-B/TIS-B Validation Testbed (연구용 ADS-B/TIS-B Validation Testbed 설계를 위한 항공감시데이터 처리의 예비 결과)

  • Song, Jae-Hoon;Oh, Kyung-Ryoon;Kim, In-Kyu;Lee, Jang-Yeon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.539-547
    • /
    • 2008
  • In this paper, preliminary results for design of prototype ADS-ADS-B/TIS-B Validation Testbed (AVT) are described. Automatic Dependent Surveillance (ADS-B) is a novel surveillance concept using the Global Navigation Satellite System (GNSS) and a digital datalink. Air traffic information from ADS-B non-equipped aircraft is not acquired since ADS-B is a dependent surveillance. Traffic Information Service-Broadcast (TIS-B) provides surveillance data from Secondary surveillance Radar (SSR) for ADS-B non-equipped aircraft. AVT is based on ADS-B and TIS-B as an integrated platform for air traffic surveillance system for CNS/ATM.

  • PDF

A Study on the Applications of GPS/Pseudolite Navigation System (GPS/의사위성의 통합 항법에 대한 응용 연구)

  • Lee Taik-Jin;Kim kang-Ho;So Hyung-Min;Kee Chang-Don;Noh Kwang-Hyun;Lee Ki-Duk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.729-738
    • /
    • 2006
  • In recent days, navigation technology becomes more important as location based service (LBS) such as E911 and telematics are considered as attractive business fields. Commercial LBS requires that navigation system should be inexpensive and available anytime and anywhere - indoors and outdoors. If we consider these requirements, it is out of question that GPS is the most favorite system in the world. However, GPS has a serious problem. The one is that GPS does not operate indoors well. This is because GPS satellites are about 20,000km above the ground so that indoor signals are too weak to be tracked in GPS receiver. And the other is that vertical accuracy is less than horizontal accuracy, because of GPS satellites' geometry. To solve these problems, many researches have been done around the world since 1990s. This paper is also one of them and we will introduce an excellent solution by use of pseudolite. Pseudolite is a kind of signal generator, which transmits GPS-like signal. So it is same as GPS satellite in ground. In this paper, we will propose the integrated navigation system of GPS and pseudolite and show the flight test results using RC airplane to proof our navigation system. As a result, we could improve the vertical accuracy of airplane into the horizontal accuracy.

A Study on the Approval Process and Criteria for Operation of Ground-Based Augmentation System (GBAS) in Korea (GBAS 국내 운용을 위한 승인 절차 및 기준 연구)

  • Bae, Joong-Won;Yun, Young-Sun;Choi, Chul-Hee;Jeong, Myeong-Sook;Kim, Dong-Min;Jun, Hyang-Sig
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.115-125
    • /
    • 2014
  • Ground-Based Augmentation System (GBAS) is providing precision approach and landing service with aircraft around airport. FAA granted System Design Approval (SDA) of SLS-4000 to Honeywell as the first GBAS category I system on September 2009. Since then, according to their own kind of approval process including System Design Approval, Facility Approval and Operational Approval, USA, Germany, Spain and Australia have approved GBAS category I system which are installed in some airports in order to provide commercial GBAS service. Recently, KARI has also installed GBAS category I system into Gimpo international airport to establish operational technology of GBAS domestically and to validate effectiveness of GBAS system in Korea. This paper introduces overseas trends and activities regarding approval process of GBAS system and presents approval process and criteria appropriate for future commercial operation of GBAS in Korea.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.