• Title/Summary/Keyword: GNSS 가강수량

Search Result 10, Processing Time 0.022 seconds

Development of Near Real Time GNSS Precipitable Water Vapor System Using Precise Point Positioning (정밀절대측위를 이용한 준실시간 GNSS 가강수량 시스템 개발)

  • Yoon, Ha Su;Cho, Jung Ho;Park, Han Earl;Yoo, Sung Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.471-484
    • /
    • 2017
  • GNSS PWV (Precipitable Water Vapor) is recognized as an important factor for weather forecasts of typhoons and heavy rainfall. Domestic and foreign research have been published that improve weather forecasts using GNSS PWV as initial input data to NWP (Numerical Weather Prediction) model. For rainfall-related weather forecasts, PWV should be provided in real time or NRT (Near-Real Time) and the accuracy and integrity should be maintained. In this paper, the development process of NRT GNSS PWV system using PPP (Precise Point Positioning). To this end, we optimized the variables related to tropospheric delay estimation of PPP. For the analysis of the PPP NRT PWV system, we compared the PWV precision of RP (Relative Positioning) and PPP. As a result, the accuracy of PPP was lower than that of RP, but good results were obtained in the PWV data integrity. Future research is needed to improve the precision of PWV in the PPP method.

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

Global Navigation Satellite System(GNSS)-Based Near-Realtime Analysis of Typhoon Track for Maritime Safety (해상안전을 위한 GNSS 기반 태풍경로 실시간 분석)

  • LEE, Jae-Kang;HA, Ji-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2019
  • In this study, in order to analyze the possibility of observing a typhoon track based on the Global Navigation Satellite System(GNSS), Typhoon NARI, the 11th typhoon of 2007, was analyzed in terms of the typhoon track as well as the local variation of perceptible water over time. The perceptible water was estimated using data obtained from observatories located on the typhoon track from Jeju to the southern coast of Korea for a total of 18 days from September 7(DOY 250) to September 24(DOY 267), 2007, including the period when the observatories were affected by the typhoon at full-scale, as well as one previous week and one following week. The results show that the trend of the variation of perceptible water was similar between the observatories near the typhoon track. Variation of perceptible water over time depending on the development and landing of the typhoon was distinctively observed. Several hours after the daily maximum of perceptible water was found at the JEJU Observatory, the first struck by the typhoon on the typhoon track, the maximum value was found at other observatories located on the southern coast. In the observation period, the time point at which the maximum perceptible water was recorded in each location was almost the same as the time point at which the typhoon landed at the location. To analyze the accuracy of the GNSS-based perceptible water measurement, the data were compared with radiosonde-based perceptible water data. The mean error was 0.0cm, and the root mean square error and the standard deviation were both 0.3cm, indicating that the GNSS-based perceptible water data were highly accurate and precise. The results of the this study show that the GNSS-based perceptible water data may be used as highly accurate information for the analysis of typhoon tracks over time.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory (속초 GNSS 가강수량을 이용한 라디오존데 센서별 편향 분석)

  • Park, Chang-Geun;Cho, Jungho;Shim, Jae-Kwan;Choi, Byoung-Choel
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.263-274
    • /
    • 2016
  • In this study, we compared the Precipitable Water Vapor (PWV) data derived from the radiosonde observation at Sokcho observatory and the PWV data at Sokcho Global Navigation Satellite System (GNSS) observatory provided by Korea Astronomy and Space Science Institute, for the summer of 2007~2014, and analyzed the radiosonde diurnal and rainfall-dependent bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and GNSS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study and dry bias of RSG-20A sensor was larger than other sensors. Overall, the tendency that the wet bias of the radiosonde PWV increased as GNSS PWV decreased and the dry bias of the radiosonde PWV increased as GNSS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2007, 2008 summer. In comparison for summer according to the presence or absence of rainfall, RS92-SGP sensor showed the highest quality.

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation (GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증)

  • Sohn, Dong Hyo;Park, Kwan Dong;Kim, Yeon Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.95-100
    • /
    • 2013
  • Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.

Development of Algerian Weighted Mean Temperature Model for High Accurate Precipitable Water Vapor (고정확도 가강수량 획득을 위한 알제리 가중평균기온 모델 개발)

  • Sim, SeungHye;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • The water vapor including latent heat is the important component in an atmospheric circulation and in a monitoring of the Earth's climate changes, as well as in the weather forecast improvement. In this study, to establish the Algerian weighted mean temperature model, a linear regression method had been developed under 5 radiosonde observations for a total 24,694 profiles from 2004 to 2013. An weighted mean temperature is a key parameter in the processing of PWV from GNSS tropospheric delays. The result from the study has expected to provide an useful model to demonstrate the realization and utility of using the ground-based GNSS meteorology technique that will bring improvements in weather forecasting, climate monitoring in Algeria.

Development of Raman LIDAR System to Measure Vertical Water Vapor Profiles and Comparision of Raman LIDAR with GNSS and MWR Systems (수증기의 연직 분포 측정을 위한 라만 라이다 장치의 개발 및 GNSS, MWR 장비와 상호 비교연구)

  • Park, Sun-Ho;Kim, Duk-Hyeon;Kim, Yong-Gi;Yun, Mun-Sang;Cheong, Hai-Du
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.283-290
    • /
    • 2011
  • A Raman LIDAR system has been designed and constructed for quantitative measurement of water vapor mixing ratio. The comparison with commercial microwave radiometer and global navigation satellite system(GNSS) was performed for the precipitable water vapor(PWV) profile and total PWV. The result shows that the total GNSS-PWV and LIDAR-PWV have good correlation with each other. But, there is small difference between the two methods because of maximum measurement height in LIDAR and the GNSS method. There are some significant differences between Raman and MWR when the water vapor concentration changes quickly near the boundary layer or at the edge of a cloud. Finally we have decided that MWR cannot detect spatial changes but LIDAR can measure spatial changes.

PROCESSING STRATEGY FOR NEAR REAL TIME GPS PRECIPITABLE WATER VAPOR RETRIEVAL (준 실시간 GPS 가강수량 생성을 위한 자료처리 전략)

  • Baek, Jeong-Ho;Lee, Jae-Won;Choi, Byung-Kyu;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For the application to the numerical weather prediction (NWP) in active service, it is necessary to ensure that the GPS precipitable water vapor (PWV) data has less than one hour latency and three millimeter accuracy. The comparison and the verification between the daily products from GPS measurement by using the IGS final ephemeris and the conventional meteorological observation has been done in domestic researches. In case of using IGS final ephemeris, GPS measurements can be only post processed in daily basis in three weeks after the observation. Thus this method cannot be applied to any near real-time data processing. In this paper, a GPS data processing method to produce the PWV output with three mm accuracy and one hour latency for the data assimilation in NWP has been planned. For our new data processing strategy, IGS ultra-rapid ephemeris and the sliding window technique are applied. And the results from the new strategy has been verified. The GPS measurements during the first 10 days of January, April, July and October were processed. The results from the observations at Sokcho, where the GPS and radiosonde were collocated, were compared. As the results, a data processing strategy with 0.8 mm of mean bias and 1.7 mm of standard deviation in three minutes forty-three seconds has been established.

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.