DOI QR코드

DOI QR Code

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation

GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증

  • Sohn, Dong Hyo (Department of Geoinformatic Engineering, Inha University) ;
  • Park, Kwan Dong (Department of Geoinformatic Engineering, Inha University) ;
  • Kim, Yeon Hee (Applied Meteorology Research Division, National Institute of Meteorological Research)
  • 손동효 (인하대학교 지리정보공학과) ;
  • 박관동 (인하대학교 지리정보공학과) ;
  • 김연희 (국립기상연구소 응용기상연구과)
  • Received : 2013.11.05
  • Accepted : 2013.12.04
  • Published : 2013.12.31

Abstract

Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.

대기 중의 가강수량은 시 공간적 변동이 크기 때문에 여러 시스템을 이용한 관측이 이루어지고 있다. 이 연구에서는 GNSS 시스템인 GPS와 GLONASS의 신호를 각각 그리고 통합 이용하여 가강수량을 산출하고 다른 관측시스템의 측정값과 상호비교하여 정확도를 검증하였다. 비교 관측시스템으로 라디오존데와 마이크로파 복사계를 이용하였고 세 개의 시스템은 동일한 장소에 설치되어 있어 상호간의 비교 및 관측값 특성을 분석하는데 용이하였다. 각 시스템 별로 측정한 가강수량은 평균 0.6mm-3.4mm 차이를 보였고 표준편차는 1.0mm-3.8mm로 나타났다. GNSS 측정값이 다른 두 시스템의 측정값에 비해 상대적으로 큰 차이를 보였는데 이는 실험에 사용된 GNSS 안테나가 국제적으로 제공되는 안테나 위상중심변동 모델 테이블에 존재하지 않는 모델이었기 때문으로 판단된다. 향후 안테나 위상중심변동 모델이 적용 가능한 안테나를 사용할 경우 GPS/GLONASS 통합자료처리를 통해 가강수량 산출 정확도 향상 및 GPS 위성관측이 제한적인 곳에서도 유효한 결과 획득이 가능할 것으로 사료된다.

Keywords

References

  1. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H., 1992, GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, Journal of Geophysical Research, Vol. 97, No. D14, pp.15787-15801. https://doi.org/10.1029/92JD01517
  2. Dach, R., Hugentobler, U., Fridez, P., and Meindl, M., 2007, Bernese GPS software version 5.0, Printing Office of the University of Bern, Bern.
  3. Ha, J., Kim, D., Park, K. D., Won, J., 2009, Observation of atmospheric water vapors using AIRS, Journal of Astronomy and Space Sciences, Vol. 26, No. 4, pp.547-554. https://doi.org/10.5140/JASS.2009.26.4.547
  4. KNMI, 2013, Royal Netherlands Meteorological Institute, http://www.knmi.nl/samenw/egvap/validation/stat_plot.cgi?GOPG,bias
  5. Kwon H. T., Iwabuchi T., Lim G.-H., 2007, Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula, Journal of the Meteorological Society of Japan, Vol. 85, No. 6, pp.733-746. https://doi.org/10.2151/jmsj.85.733
  6. Lee, H. S., Park, K. D., Kim, D. S., Sohn, D. H., 2012, Analysis of integrated GPS and GLONASS double difference relative positioning accuracy in the simulation environment with lots of signal blockage, Journal of Navigation and Port Research, Vol. 36, No. 6, pp.429-435. https://doi.org/10.5394/KINPR.2012.36.6.429
  7. Moon, Y. J., Choi, K. H., 1999, Estimation of precipitable water vapor using the GPS, Journal of Astronomy and Space Sciences, Vol. 16, No. 1, pp.61-68.
  8. NGS, 2012, NGS Antenna Calibration Procedures.
  9. NOAA, 2013, Ground Based GPS Meteorology, http://www.gpsmet.noaa.gov/
  10. Park, K. D., Won, J., 2006, Comparison of calibration models for GPS antenna phase center variations, Korean Journal of Geomatics, Vol. 24, No. 4, pp.319-326.
  11. Park, W. Y., Kim, J. S., Kim, Y. B., Back, K. S., Accuracy analysis of positioning supplementary control point with the RTK-GPS and RTK-GPS/GLONASS, Journal of the Korean Society for Geospatial Information System, 2003, Vol. 11, No. 1, pp.61-69.
  12. Rose, T., Czekala, H., 2009, RPG-HATPRO operating manual version 7.88, Printing Radiometer Physics Gmbh, Meckenhaim.
  13. Sohn D. H., Park K. D., Won J., Cho J., Roh K. M., 2012, Comparison of the characteristics of precipitable water vapor measured by global positioning system and microwave radiometer, Journal of Astronomy and Space Sciences, Vol. 29, No. 1, pp.1-10. https://doi.org/10.5140/JASS.2012.29.1.001
  14. Vedel, H., 2003, Radiosonde data specification document, TOUGH deliverables, The Danish Meteorological Institute.
  15. Wang J., Zhang L., 2008, Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements, Journal of Climate, Vol. 21, pp.2218-2238. https://doi.org/10.1175/2007JCLI1944.1

Cited by

  1. Quality Assessment of Tropospheric Delay Estimated by Precise Point Positioning in the Korean Peninsula vol.3, pp.4, 2014, https://doi.org/10.11003/JPNT.2014.3.4.131
  2. Analysis of Temporal and Spatial Variation of Precipitable Water Vapor According to Path of Typhoon EWINIAR using GPS Permanent Stations vol.4, pp.2, 2015, https://doi.org/10.11003/JPNT.2015.4.2.087