DOI QR코드

DOI QR Code

Development of Raman LIDAR System to Measure Vertical Water Vapor Profiles and Comparision of Raman LIDAR with GNSS and MWR Systems

수증기의 연직 분포 측정을 위한 라만 라이다 장치의 개발 및 GNSS, MWR 장비와 상호 비교연구

  • Park, Sun-Ho (Hanbat National University, Division of Cultural Studies) ;
  • Kim, Duk-Hyeon (Hanbat National University, Division of Cultural Studies) ;
  • Kim, Yong-Gi (Kongju National University, Department of Physics) ;
  • Yun, Mun-Sang (Kongju National University, Department of Physics) ;
  • Cheong, Hai-Du (Hanbat National University, Division of Cultural Studies)
  • Received : 2011.09.26
  • Accepted : 2011.11.02
  • Published : 2011.12.25

Abstract

A Raman LIDAR system has been designed and constructed for quantitative measurement of water vapor mixing ratio. The comparison with commercial microwave radiometer and global navigation satellite system(GNSS) was performed for the precipitable water vapor(PWV) profile and total PWV. The result shows that the total GNSS-PWV and LIDAR-PWV have good correlation with each other. But, there is small difference between the two methods because of maximum measurement height in LIDAR and the GNSS method. There are some significant differences between Raman and MWR when the water vapor concentration changes quickly near the boundary layer or at the edge of a cloud. Finally we have decided that MWR cannot detect spatial changes but LIDAR can measure spatial changes.

수증기의 혼합비를 측정하기 위하여 라만 라이다 시스템을 설계 제작하였다. 시스템을 검증하기 위하여 가강수량과 분포에 대하여 상용 마이크로파 라이오메터(MWR)와 GPS 신호를 이용하는 방법과 비교 연구를 수행하였다. GNSS 방법으로 측정한 총가강수량과 본 라이다 방법에서는 작은 차이를 보였는데, 이는 라이다 방법으로 얻을 수 있는 수증기의 측정고도가 제한적이기 때문이다. 반면에 MWR 방법과 라이다 방법으로 얻은 고도에 따른 수증기량은 수증기량이 급격하게 변하는 구름 경계나 경계고도 근처에서 심한 차이를 보이고 있었다. MWR은 그 밀도가 급격하게 변하는 곳에서 취약한 점을 보였으나 개발된 라만 라이다의 경우는 그 밀도가 급격히 변하는 곳에서도 측정이 원활하게 이루어지고 있음을 알 수 있었다.

Keywords

References

  1. K. P. Shine and A. Sinha, "Sensitivity of the Earth's climate to height-dependent changes in the water vapour mixing ratio," Nature 354, 382 (1991). https://doi.org/10.1038/354382a0
  2. F. Harnisch, M. Weissmann, M. Wirth, C. Cardinali, and P. Bauer, "Assimilation of DIAL water vapour observations into the ECMWF global model," http://earth.eo.esa.int/ eosummerschool/envschool_2010/139.pdf.
  3. J. Choi, K. Nam, M. Suk, J. Sim, and B. Choi, "Development of very short range forecast of precipitation calibration system," Proceeding of the Spring Meeting of KMS, 174-175 (2006).
  4. M. Bevis, S. Thomas, C. Rocken, R. A. Anthes, and R. H. Ware, "Remote sensing of atmospheric water vapor using the global positioning system," J. Geophys. Res. 97, 15787 (1992). https://doi.org/10.1029/92JD01517
  5. J. Ha, "GPS data treatment tragedy for Qusi real time 3 dimensional water vapor distribution," Ph. D. thesis, Inha University (2009).
  6. D. D. Turner, T. R. Shippert, J. C. Liljegren, Y. Han, and E. Westwater, "Initial analysis of water vapor and temperature profiles retrieved from integrated ground-based remote sensors," http://www.rm.gov/ublications/roceedings/onf06/ extended_abs/turner2_dd.pdf.
  7. J. Ha and K.-d. Park, "Estimation of water vapor vertical profiles in the atmosphere using GPS measurements," Atmosphere 19, 289-296 (2009).
  8. J. Askne and H. Nordius, "Estimation of tropospheric delay for microwaves from surface weather data," Radio Sci. 23, 379 (1987).
  9. J. Lee, "Anaysis of initial GPS precipitable value effects in numerical weather forecast," Journal of Astronomy and Space Sciences 24, 285 (2007). https://doi.org/10.5140/JASS.2007.24.4.285
  10. R. G. Kleidman, Y. J. Kaufman, B. V. Gao, L. A. Remer, V. G. Brackett, R. A. Ferrare, E. V. Browell, and S. Ismail, "Remote sensing of total precipitable water vapor in the near-IR over ocean glint," Geophys. Res. Letters 27, 2657 (2000). https://doi.org/10.1029/1999GL011156
  11. B.-C. Gao and Y. J. Kaufman, "The MODIS near-IR water vapor algorithm," http://modis-atmos.gsfc.nasa.gov/ _docs/atbd_mod03.pdf (1992).
  12. K. Ertel, "The MODIS near-IR water vapor algorithm," Geophys. Res. 97, 15787 (1992). https://doi.org/10.1029/92JD01517
  13. S. H. Melfi and D. N. Whiteman, "Observation of lower atmospheric moisture and its evolution using a Raman LIDAR," Bull. Am. Meteor. Soc. 66, 1288 (1989).
  14. S. H. Melfi, D. N. Whiteman, and R. Ferrare, "Observation of atmospheric fronts using Raman LIDAR moisture measurements," J. Appl. Meteor. 28, 789-806 (1989). https://doi.org/10.1175/1520-0450(1989)028<0789:OOAFUR>2.0.CO;2
  15. C. Rocken, T. Van Hove, J. Johnson, F. Solheim, R. H. Ware, M. Bevis, S. Chiswell, and S. Businger, "GPS/STORMGPS sensing of atmospheric water vapor for meteorology," J. Atmos. Ocean. Technol. 12, 468 (1995). https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2
  16. J. Ha, K.-d. Park, K.-Jang, and H. Yang, "Precision validation of GPS precipitable water vapor via comparison with MWR measurements," Atmosphere 17, 291 (2007).
  17. P. Basili, S. Bonafoni, R. Ferrara, P. Ciotti, E. Fionda, and R. Ambrosini, "Atmosphericwater vapor retrieval by means of both a GPS network anda microwave radiometer during an experimental campaign at Cagliari (Italy) in 1999," IEEE Trans. Geosci. Remote Sens. 39, 2436 (2001). https://doi.org/10.1109/36.964980
  18. Y. Han, J. B. Snider, E. R. Westwater, S. H. Melfi, and R. A. Ferraro, "Observations of water vapor by groundbased microwave radiometers and Raman LIDAR," J. Geophys. Res. 99, D9, 18695 (1994). https://doi.org/10.1029/94JD01487
  19. B.-C. Gao, E. R. Westwater, B. B. Stankov, D. Birkenheuer, and A. F. H. Goetz, "Comparison of column water vapor measurements using downward-looking optical and infrared imaging spectrometry and upward- looking microwave radiometry," J. Appl. Meteorol. 31, 1193 (1992). https://doi.org/10.1175/1520-0450(1992)031<1193:COCWVM>2.0.CO;2
  20. D. Kim, H. Cha, and J. Lee, "Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals," J. Korean Phys. Soc. 33, 301-307 (1998).
  21. H. Yoshiyama, A. Ohi, and K. Ohta, "Derivation of the aerosol size distribution from a bistatic system of a muitiwavelength laser with the singular value decomposition method," Appl. Opt. 35, 2642 (1996). https://doi.org/10.1364/AO.35.002642
  22. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, "Raman LIDAR system for the measurement of water vapor and aerosols in the Earth's atmosphere," Appl. Opt. 31, 3068 (1992). https://doi.org/10.1364/AO.31.003068
  23. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, "Raman LIDAR observations of cloud liquid water," Appl. Opt. 43, 6440 (2004). https://doi.org/10.1364/AO.43.006440
  24. J. R. Garratt, The Atmospheric Boundary Layer (Cambridge University Press, New York, USA, 1992).