Browse > Article
http://dx.doi.org/10.7848/ksgpc.2015.33.1.53

Development of Algerian Weighted Mean Temperature Model for High Accurate Precipitable Water Vapor  

Sim, SeungHye (Dept. of Environmental Disaster Prevention Engineering, Kangwon National University)
Song, DongSeob (Dept. of Ocean Construction Engineering, Kangwon National University)
Publication Information
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography / v.33, no.1, 2015 , pp. 53-62 More about this Journal
Abstract
The water vapor including latent heat is the important component in an atmospheric circulation and in a monitoring of the Earth's climate changes, as well as in the weather forecast improvement. In this study, to establish the Algerian weighted mean temperature model, a linear regression method had been developed under 5 radiosonde observations for a total 24,694 profiles from 2004 to 2013. An weighted mean temperature is a key parameter in the processing of PWV from GNSS tropospheric delays. The result from the study has expected to provide an useful model to demonstrate the realization and utility of using the ground-based GNSS meteorology technique that will bring improvements in weather forecasting, climate monitoring in Algeria.
Keywords
Algeria; Radiosonde; Precipitable Water Vapor; GNSS; Weighted Mean Temperature Model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Davis, J.L., Herring, T.A., Sharpiro, I.I., Rogers, A.E.E., and Elgered, G. (1985), Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio Science, Vol. 20, No. 6, pp. 1593-1607.   DOI   ScienceOn
2 Elgered, G., Davis, J.L., Herring, T.A., and Shapiro, I.I. (1991), Geodesy by radio interferometry: water vapor radiometry of estimation of the wet delay, J. Geophys. Res., Vol. 96, pp. 6541-6555.   DOI
3 Gendt, G., Dick, G., Reigber, C., Tomassini, M.Y., Liu, M., and Ramatschi, M. (2004), Near real time GPS water vapor monitoring for numerical weather prediction in Germany, J. Meteorol. Soc. Jpn., Vol. 82, pp. 361-370.   DOI   ScienceOn
4 Gradinarsky, L.P., Johansson, J.M., Bouma, H.R., Scherneck, H.G., and Elgered, G. (2002), Climate monitoring using GPS, Vol. 27, pp. 335-340.
5 Guerova, G., Brockmann, E., Quiby, J., Schubiger, F., and Matzler, C. (2003), Validation of NWP mesoscale models with Swiss GPS network AGNES, J. Appl. Meteorol., Vol. 42, pp. 141-150.   DOI
6 Gutman, S.I., Sahm, S., Stewart, J., Benjamin, S., and Smith, T. (2003), A new composite observing strategy for GPS meteorology, 12th Symposium on meteorological observations and instrumentation, Am. Meteorol. Soc., Long Beach, CA.
7 Hagemann, S., Bengtsson, L., and Gendt, G. (2003), On the determination of atmospheric water vapor from GPS measurements, J. Geophys. Res., Vol. 108 No. D21, 4678p.   DOI
8 Kuo, Y.H., Guo, Y.R., and Westwater, E.R. (1993), Assimilation of precipitable water measurements into a mesoscale model, Mon. Weather Rev., Vol. 121, pp.1215–1238.   DOI
9 Benge, D.S. (1996), Development of a low-cost GPS-based time-space-positioning information (TSPI) System, 52th Annual Meeting-Institute of Navigation, ION, 19-21 June, Cambridge, MA, pp. 195-199.
10 Bevis, M., Businger, S., Chiswell, S., Herring, T.A., Anthes, R.A., Rocken, C., and Ware, R.H. (1994), GPS meteorology-mapping zenith wet delays onto precipitable water, J. Appl. Meteorol., Vol. 33(3), pp. 379-386.   DOI
11 Bevis, M., Businger, S., and Herring, A. (1992), GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., Vol. 97, pp. 15787-15801.   DOI
12 Bock, O., Keil, C., Richard, E., Flamant, C., and Bouin, M.N. (2005), Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP, Quarterly Journal of the Royal Meteorological Society, Vol. 131, No. 612, pp. 3013-3036.   DOI   ScienceOn
13 Boutiouta, S. and Lahcene, A. (2009), Algerian weighted mean temperature equation (AWMTE) and GNSS meteorology technique application, Proceeding of 1st International Symposium on Modeling and Implementation of Complex Systems, Vol. 4, 7p.
14 Dai, A., Wang, J., Ware, R.H., and Van Hove, T. (2002), Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity, J. Geophys. Res., Vol. 107, No. D10, 4090p.   DOI
15 Wang,J., Carlson, D.J., Parsons, D.B., Hock, T.F., Lauritsen, D., Cole, H.L., Beierle, K., and Chamberlain, E. (2003), Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dewpoint hygrometer and its climate implication, Geophys. Res. Lett., Vol. 30, No. 16, 1860p.   DOI
16 Wang, J., Cole, H.L., Carlson, D.J., Miller, E.R., Beierle, K., Paukkunen, A., and Laine, T.K. (2002), Corrections of humidity measurement errors from the Vaisala RS80 radiosonde-Application to TOGA COARE data, J. Atmos. Oceanic Tech., Vol. 19, pp. 981–1002.   DOI
17 Turner, D.D., Lesht, B.M., Clough, S.A., Liljegren, J.C., Revercomb, H.E., and Tobin, D.C. (2003), Dry bias and variability in Vaisala RS80-H radiosondes, J. Atmos. Oceanic Tech., Vol. 20, 117p.   DOI
18 Vey, S., Dietrich, R., Johnsen, K.P., Miao, J., and Heygster, G. (2004), Comparison of tropospheric water vapour over Antarctica derived from AMSU-B data, ground-based GPS data and the NCEP/NCAR reanalysis, J. Meteorol. Soc. Jpn., Vol. 82, pp. 259–267.   DOI   ScienceOn
19 Wu, P.M., Hamada, J.I., Mori, S., Tauhid, Y.I., Yamanaka, M.D., and Kimura, F. (2003), Diurnal variation of precipitable water over a mountainous area of Sumatra Island, J. Appl. Meteorol., Vol. 42, pp. 1107–1115.   DOI
20 Randel, D.L., Vonder Haar, T.H., Ringerud, M.A., Stephens, G.L., Greenwald, T.J., and Combs, C.L. (1996), A new global water vapor dataset, Bull. Am. Meteorol. Soc., Vol. 77, pp. 1233-1246.   DOI
21 Larry, O.(2014), Atmospheric soundings, Wyoming Weather Web, http://weather.uwyo.edu/upperair/sounding.html. (last date accessed: 28 December 2014).
22 Rocken, C., Ware, R.H., Van Hove, T., Solheim, F., Alber, C., and Johnson, J. (1993), Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., Vol. 20, pp. 2631-2634.   DOI
23 Lee, S.H. (2007), Climatology, Purungil, 261p.
24 Li, Z., Muller, J.P., and Cross, P. (2003), Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements, J. Geophys. Res., Vol. 108, No. D20, 4651p.   DOI
25 NCDC. (2005), WMO resolution 40 NOAA policy, NOAA, http://cdo.ncdc.noaa.gov/pls/plclimprod/poemain. accessrouter?datasetabbv=DS3505 (last date accessed:15 January 2015).
26 Schüler, T. (2001), On Ground-based GPS Tropospheric Delay Estimation, Ph.D. dissertation, Studiengang Geodsie and Geoinformation, University of FAF Munich, Germany, Vol. 73.
27 Sim, S.H. and Song, D.S. (2014), Analysis of precipitable water vapor variation in Algeria using radiosonde, Proceedings of the KSGPC 2014 Spring Symposium, KSGPC, April, Seoul, Korea, pp. 131-136.
28 Solbrig, P. (2000), Untersuchungen ber die Nutzung Numerischer Wettermodelle zur Wasserdampfbestimmung Mit Hife des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, Germany.
29 Gaffen, D.J., Barnett, T.P., and Elliott, W.P. (1991), Space and time scales of global tropospheric moisture, J. Clim., 4, pp. 989-1008.   DOI
30 Song, D.S. (2007), Accuracy Improvement of Precipitable Water Vapor Estimation by Precise GPS Analysis, Ph.D. dissertation, SungKyunKwan University, Suwon, Korea, pp. 62-65.