DOI QR코드

DOI QR Code

Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory

속초 GNSS 가강수량을 이용한 라디오존데 센서별 편향 분석

  • Park, Chang-Geun (High-impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Jungho (Space Geodesy Group, Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Shim, Jae-Kwan (High-impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences) ;
  • Choi, Byoung-Choel (High-impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences)
  • 박창근 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 조정호 (한국천문연구원 우주과학본부 우주측지그룹) ;
  • 심재관 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 최병철 (국립기상과학원 관측기반연구과 재해기상연구센터)
  • Received : 2016.04.25
  • Accepted : 2016.05.13
  • Published : 2016.06.30

Abstract

In this study, we compared the Precipitable Water Vapor (PWV) data derived from the radiosonde observation at Sokcho observatory and the PWV data at Sokcho Global Navigation Satellite System (GNSS) observatory provided by Korea Astronomy and Space Science Institute, for the summer of 2007~2014, and analyzed the radiosonde diurnal and rainfall-dependent bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and GNSS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study and dry bias of RSG-20A sensor was larger than other sensors. Overall, the tendency that the wet bias of the radiosonde PWV increased as GNSS PWV decreased and the dry bias of the radiosonde PWV increased as GNSS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2007, 2008 summer. In comparison for summer according to the presence or absence of rainfall, RS92-SGP sensor showed the highest quality.

이 연구에서는 2007년에서 2014년까지의 여름철에 대해 속초기상대 라디오존데 관측을 통해 산출된 가강수량과 속초 GNSS 관측소의 가강수량을 비교하였다. 라디오존데 센서 유형별 수증기량 관측 자료가 주야간 및 강수 발생 유무에 따라 어떠한 특성을 가지는지 분석하였다. 두 관측기기의 주간, 야간별 관측 시점에 따른 가강수량 산포도에서는 선행 연구에서 알려진 바와 같이 주간의 라디오존데 관측에서는 건조 편향이 발견되었다. 특히 RSG-20A 센서는 주간, 야간에서 다른 센서에 비해 건조 편향이 크게 나타났다. 또한 전반적으로 GNSS 가강수량이 증가함에 따라 라디오존데 가강수량이 GNSS 가강수량에 대해 과대 추정에서 과소 추정으로 변화하는 경향이 발견되었다. 라디오존데 가강수량의 편향 및 오차에 대한 정량적 분석에서는 2007, 2008년을 제외하고는 센서 종류에 상관없이 여름의 주간에 비해 야간에서 더 작은 평균 편향을 가짐을 확인할 수 있다. 여름철 강수의 유무에 따른 비교에서는 RS92-SGP 센서가 가장 뛰어난 품질의 결과를 보였다.

Keywords

References

  1. Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, 1992. GPS meteorology: remote sensing of atmospheric water vapor using global positioning system, Journal of Geophysical Research, 97: 15787-15801. https://doi.org/10.1029/92JD01517
  2. Bevis, M., S. Chiswell, S. Businger, T.A. Herring, and Y. Bock, 1996. Estimating wet delays using numerical weather analyses and predictions, Radio Science, 31: 477-487. https://doi.org/10.1029/96RS00008
  3. Businger, S., S.R. Chiswell, M. Bevis, J. Duan, R.A. Anthes, C. Rocken, R.H. Ware, M. Exner, T. VanHove, and F.S. Solheim, 1996. The promise of GPS in atmospheric monitoring, Bulletin of the American Meteorological Society, 77: 5-18. https://doi.org/10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2
  4. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, 2007. Bernese GPS Software Version 5.0, Stampfli Publications, Bern, Switzerland.
  5. Davis, J.L., T.A. Herring, I.I. Shapiro, A.E. Rogers, and G. Elgered, 1985. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 20: 1593-1607. https://doi.org/10.1029/RS020i006p01593
  6. Duan, J., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, F. Solheim, T. VanHove, R.H. Ware, S. McClusky, T.A. Herring, and R.W. King, 1996. GPS meteorology: direct estimation of the absolute value of precipitable water, Journal of Applied Meteorology, 35: 830-838. https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
  7. Durre, I., C.N. Williams, X. Yin, and R.S. Vose, 2009. Radiosonde-based trends in precipitable water over the northern hemisphere: an update, Journal of Geophysical Research, 114: D05112, doi:10.1029/2008JD010989.
  8. Elgered, G., J.L. Davis, T.A. Herring, and I.I. Shapiro, 1991. Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay, Journal of Geophysical Research, 96: 6541-6555. https://doi.org/10.1029/90JB00834
  9. Elliott, W.P. and D.J. Gaffen, 1991. On the utility of radiosonde humidity archives for climate studies, Bulletin of the American Meteorological Society, 72: 1507-1520. https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2
  10. Kim, J.S. and I.H. Yoon, 2014. Study on the prediction of turning point of typhoon tracks using COMS water vapor images, Journal of Korean Earth Science Society, 35: 168-179 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2014.35.3.168
  11. Kim, J.S. and T.S. Bae, 2015. Comparative analysis of GNSS precipitable water vapor and meteorological factors, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33: 317-324 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.317
  12. Kim, K.H., Y.H. Kim, and D.E. Chang, 2009. The analysis of changma structure using radiosonde observational data from KEOP-2007: Part I. the assessment of the radiosonde data, Atmosphere, 19: 213-226 (in Korean with English abstract).
  13. Kwon, H.T., T. Iwabuchi, and G.H. Lim, 2007. Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula, Journal of the Meteorological Society of Japan, 85: 733-746. https://doi.org/10.2151/jmsj.85.733
  14. Lean, K. and R.W. Saunders, 2013. Validation of the ATSR reprocessing for climate (ARC) dataset using data from drifting buoys and a three-way error analysis, Journal of Climate, 26: 4758-4772. https://doi.org/10.1175/JCLI-D-12-00206.1
  15. Li, Z., J.P. Muller, and P. Cross, 2003. Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements, Journal of Geophysical Research, 108(D20): 4651, doi:10.1029/2003JD003372.
  16. Lim, Y.K., S.O. Han, S.P. Jung, and J.H. Seong, 2013. The characteristic analysis of precipitable water vapor according to GPS observation baseline determination, Journal of Korean Earth Science Society, 34: 626-632 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.7.626
  17. Liou, Y.A., C.Y. Huang, and Y.T. Teng, 2000. Precipitable water observed by ground-based GPS receivers and microwave radiometry, Earth Planets Space, 52: 445-450. https://doi.org/10.1186/BF03352256
  18. Liou, Y.A., Y.T. Teng, T. VanHove, and J.C. Liljegren, 2001. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, Journal of Applied Meteorology, 40: 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
  19. Lorenc, A.C., D. Barker, R.S. Bell, B. Macpherson, and A.J. Maycock, 1996. On the use of radiosonde humidity observations in mid-latitude NWP, Meteorology and Atmospheric Physics, 60: 3-17. https://doi.org/10.1007/BF01029782
  20. McMillin, L.M., J. Zhao, M.K. Rama Varma Raja, S.I. Gutman, and J.G. Yoe, 2007. Radiosonde humidity corrections and potential atmospheric infrared sounder moisture accuracy, Journal of Geophysical Research, 112: D13S90, doi:10.1029/2005JD006109.
  21. Motell, C., J. Porter, J. Foster, M. Bevis, and S. Businger, 2002. Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes, International Journal of Remote Sensing, 23: 2335-2339. https://doi.org/10.1080/01431160110069944
  22. Nakamura, H., H. Seko, and Y. Shoji, 2004. Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS, Journal of the Meteorological Society of Japan, 82: 277-299. https://doi.org/10.2151/jmsj.2004.277
  23. Ohtani, R. and I. Naito, 2000. Comparisons of GPSderived precipitable water vapors with radiosonde observations in Japan, Journal of Geophysical Research, 105: 26917-26929. https://doi.org/10.1029/2000JD900362
  24. Rocken, C., T. VanHove, J. Johnson, F. Solheim, R.H. Ware, M. Bevis, S. Chiswell, and S. Businger, 1995. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478. https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2
  25. Song, D.S., H.S. Yun, and J.M. Cho, 2002. Estimation of tropospheric water vapor using GPS observation, Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography, 20: 215-222 (in Korean with English abstract).
  26. Takiguchi, H., T. Kato, H. Kobayashi, and T. Nakaegawa, 2000. GPS observations in Thailand for hydrological applications, Earth Planets Space, 52: 913-919. https://doi.org/10.1186/BF03352305
  27. Wang, J. and L. Zhang, 2008. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements, Journal of Climate, 21: 2218-2238. https://doi.org/10.1175/2007JCLI1944.1
  28. World Meterorological Organization, 2006. Instruments and observing methods, Report No. 83, WMO Publications, Geneva, Switzerland.
  29. World Meterorological Organization, 2008. Guide to meteorological instruments and methods of observation, WMO Publications, Geneva, Switzerland.
  30. World Meterorological Organization, 2011. Instruments and observing methods, Report No. 107, WMO Publications, Geneva, Switzerland.
  31. Yang, H.Y., K.H. Chang, J.W. Cha, Y.J. Choi, and C.S. Ryu, 2012. Characteristics of precipitable water vapor and liquid water path by microwave radiometer, Journal of Korean Earth Science Society, 33: 233-241 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2012.33.3.233