Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.6.283

Development of Raman LIDAR System to Measure Vertical Water Vapor Profiles and Comparision of Raman LIDAR with GNSS and MWR Systems  

Park, Sun-Ho (Hanbat National University, Division of Cultural Studies)
Kim, Duk-Hyeon (Hanbat National University, Division of Cultural Studies)
Kim, Yong-Gi (Kongju National University, Department of Physics)
Yun, Mun-Sang (Kongju National University, Department of Physics)
Cheong, Hai-Du (Hanbat National University, Division of Cultural Studies)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.6, 2011 , pp. 283-290 More about this Journal
Abstract
A Raman LIDAR system has been designed and constructed for quantitative measurement of water vapor mixing ratio. The comparison with commercial microwave radiometer and global navigation satellite system(GNSS) was performed for the precipitable water vapor(PWV) profile and total PWV. The result shows that the total GNSS-PWV and LIDAR-PWV have good correlation with each other. But, there is small difference between the two methods because of maximum measurement height in LIDAR and the GNSS method. There are some significant differences between Raman and MWR when the water vapor concentration changes quickly near the boundary layer or at the edge of a cloud. Finally we have decided that MWR cannot detect spatial changes but LIDAR can measure spatial changes.
Keywords
Lidar (Light detection and ranging); GNSS (GNSS, Global Navigtion satelite system); MWR (Micro Wave Radiometer); PWV (Precipitable Water Vapor); Water vapor;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Ha, K.-d. Park, K.-Jang, and H. Yang, "Precision validation of GPS precipitable water vapor via comparison with MWR measurements," Atmosphere 17, 291 (2007).   과학기술학회마을
2 P. Basili, S. Bonafoni, R. Ferrara, P. Ciotti, E. Fionda, and R. Ambrosini, "Atmosphericwater vapor retrieval by means of both a GPS network anda microwave radiometer during an experimental campaign at Cagliari (Italy) in 1999," IEEE Trans. Geosci. Remote Sens. 39, 2436 (2001).   DOI
3 Y. Han, J. B. Snider, E. R. Westwater, S. H. Melfi, and R. A. Ferraro, "Observations of water vapor by groundbased microwave radiometers and Raman LIDAR," J. Geophys. Res. 99, D9, 18695 (1994).   DOI
4 B.-C. Gao, E. R. Westwater, B. B. Stankov, D. Birkenheuer, and A. F. H. Goetz, "Comparison of column water vapor measurements using downward-looking optical and infrared imaging spectrometry and upward- looking microwave radiometry," J. Appl. Meteorol. 31, 1193 (1992).   DOI
5 D. Kim, H. Cha, and J. Lee, "Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals," J. Korean Phys. Soc. 33, 301-307 (1998).   과학기술학회마을
6 H. Yoshiyama, A. Ohi, and K. Ohta, "Derivation of the aerosol size distribution from a bistatic system of a muitiwavelength laser with the singular value decomposition method," Appl. Opt. 35, 2642 (1996).   DOI
7 J. Choi, K. Nam, M. Suk, J. Sim, and B. Choi, "Development of very short range forecast of precipitation calibration system," Proceeding of the Spring Meeting of KMS, 174-175 (2006).
8 M. Bevis, S. Thomas, C. Rocken, R. A. Anthes, and R. H. Ware, "Remote sensing of atmospheric water vapor using the global positioning system," J. Geophys. Res. 97, 15787 (1992).   DOI
9 J. Ha, "GPS data treatment tragedy for Qusi real time 3 dimensional water vapor distribution," Ph. D. thesis, Inha University (2009).
10 D. D. Turner, T. R. Shippert, J. C. Liljegren, Y. Han, and E. Westwater, "Initial analysis of water vapor and temperature profiles retrieved from integrated ground-based remote sensors," http://www.rm.gov/ublications/roceedings/onf06/ extended_abs/turner2_dd.pdf.
11 J. Ha and K.-d. Park, "Estimation of water vapor vertical profiles in the atmosphere using GPS measurements," Atmosphere 19, 289-296 (2009).   과학기술학회마을
12 J. Askne and H. Nordius, "Estimation of tropospheric delay for microwaves from surface weather data," Radio Sci. 23, 379 (1987).
13 J. Lee, "Anaysis of initial GPS precipitable value effects in numerical weather forecast," Journal of Astronomy and Space Sciences 24, 285 (2007).   DOI
14 R. G. Kleidman, Y. J. Kaufman, B. V. Gao, L. A. Remer, V. G. Brackett, R. A. Ferrare, E. V. Browell, and S. Ismail, "Remote sensing of total precipitable water vapor in the near-IR over ocean glint," Geophys. Res. Letters 27, 2657 (2000).   DOI
15 B.-C. Gao and Y. J. Kaufman, "The MODIS near-IR water vapor algorithm," http://modis-atmos.gsfc.nasa.gov/ _docs/atbd_mod03.pdf (1992).
16 K. Ertel, "The MODIS near-IR water vapor algorithm," Geophys. Res. 97, 15787 (1992).   DOI
17 S. H. Melfi and D. N. Whiteman, "Observation of lower atmospheric moisture and its evolution using a Raman LIDAR," Bull. Am. Meteor. Soc. 66, 1288 (1989).
18 D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, "Raman LIDAR system for the measurement of water vapor and aerosols in the Earth's atmosphere," Appl. Opt. 31, 3068 (1992).   DOI
19 K. P. Shine and A. Sinha, "Sensitivity of the Earth's climate to height-dependent changes in the water vapour mixing ratio," Nature 354, 382 (1991).   DOI
20 F. Harnisch, M. Weissmann, M. Wirth, C. Cardinali, and P. Bauer, "Assimilation of DIAL water vapour observations into the ECMWF global model," http://earth.eo.esa.int/ eosummerschool/envschool_2010/139.pdf.
21 V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, "Raman LIDAR observations of cloud liquid water," Appl. Opt. 43, 6440 (2004).   DOI
22 J. R. Garratt, The Atmospheric Boundary Layer (Cambridge University Press, New York, USA, 1992).
23 C. Rocken, T. Van Hove, J. Johnson, F. Solheim, R. H. Ware, M. Bevis, S. Chiswell, and S. Businger, "GPS/STORMGPS sensing of atmospheric water vapor for meteorology," J. Atmos. Ocean. Technol. 12, 468 (1995).   DOI
24 S. H. Melfi, D. N. Whiteman, and R. Ferrare, "Observation of atmospheric fronts using Raman LIDAR moisture measurements," J. Appl. Meteor. 28, 789-806 (1989).   DOI