• Title/Summary/Keyword: GMO

Search Result 187, Processing Time 0.023 seconds

The role and policy direction of food science and technology for food security of korea (식량안보를 위한 식품과학기술의 역할과 정책방향)

  • Lee, Cherl-Ho
    • Food Science and Industry
    • /
    • v.49 no.4
    • /
    • pp.3-18
    • /
    • 2016
  • The status of Korean food security was analyzed by considering world food situation and food self-sufficiency of Korea, and the hurdles to be solved by science and technology were highlighted. The role of food science and technology in preparing for future food crisis was reviewed in four categories: application of modern biotechnology to increase food production, use of irradiation technology for food storage, food processing technology for rice utilization in particular, and improving food safety regulation system for waste reduction.

The application of new breeding technology based on gene editing in pig industry - A review

  • Tu, Ching-Fu;Chuang, Chin-kai;Yang, Tien-Shuh
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.791-803
    • /
    • 2022
  • Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU's Green Deal and biodiversity strategies and even meet the United Nations' sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.

Impact of vitamin-A-enhanced transgenic soybeans on above-ground non-target arthropods in Korea

  • Sung-Dug, Oh;Kihun, Ha;Soo-Yun, Park;Seong-Kon, Lee;Do won, Yun;Kijong, Lee;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.875-890
    • /
    • 2021
  • In order to confirm the safety of a genetically modified organism (GMO), we assess its potential toxicity on non-target insects and spiders. In this study, the effects of GM soybean, a type of vitamin-A-enhanced transgenic soybean with tolerance to the herbicide glufosinate, were assessed under a field condition. The study compared this vitamin-A-enhanced transgenic soybean and a non-GM soybean (Gwangan) in a living modified organism (LMO) isolated field of Kyungpook National University (Gunwi) and the National Institute Agricultural Sciences (Jeonju) in the Republic of Korea in 2019 - 2020. In total, 207,760 individual insects and arachnids, representing 81 families and 13 orders, were collected during the study. From the two types of soybean fields, corresponding totals of 105,765 and 101,995 individuals from the vitamin-A-enhanced transgenic soybean and Gwangan samples areas were collected. An analysis of variance indicated no significant differences (p < 0.05). A multivariate analysis showed that the dominance and richness outcomes of plant-dwelling insects were similar. The data on insect species population densities were subjected to a principal component analysis (PCA) and an orthogonal partial least squares-discriminant analysis (OPLS-DA), which did not distinguish between the two varieties, i.e., the vitamin-A-enhanced transgenic soybean and the non-GM soybean in any cultivated field. However, the results of the PCA analysis could be divided overall into four groups based on the yearly survey areas. Therefore, there was no evidence for the different impact of vitamin A-enhanced transgenic soybean on the above-ground insects and spiders compared to non-GM soybean.

Environmental Monitoring of Herbicide Tolerant Genetically Modified Zoysiagrass (Zoysia japonica) around Confined Field Trials (제초제저항성 유전자변형 들잔디의 시험 격리포장 주변 환경방출 모니터링)

  • Lee, Bumkyu;Park, Kee Woong;Kim, Chang-Gi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Ryu, Tae-Hun;Lee, Hyo-Yeon
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Seed distribution and transgenes to environmental ecosystem is one of the most important factors in risk assessment and risk management of GM crop. Safe management for the development and commercialization of GM crops is required according to The Act on Transboundary Movements of Living Modified Organisms,etc (LMO Act) in Korea. This study was conducted to setup the environmental monitoring system of GM zoysiagrass (event JG21 and JG21-MS). The monitoring was performed in 4 GMO confined fields, Sungwhan, Ochang, Jeju University and Jeju Namwon. In the result of monitoring, we could not found any gene flow and distribution of GM zoysiagrass in the 3 fields, but one spill of JG21 was found in the Namwon field in 2012. These results suggest that continuous monitoring is necessary to detect the occurrence of GM zoysiagrass for preventing genetic contamination in natural environment.

Detection of Genetically Modified Genes from Soybean Sprout Products (콩나물에서 발견된 유전자 변형 도입 유전자의 비의도적 혼입 조사)

  • 윤성철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • A total of 219 polymerase chain reaction tests of genetically modified (GM) DNA sequences in soybean seeds and soybean sprouts were conducted during 2000-2001. No CM gene was found in 96 tests of soybean seeds. However, either a functional CP4EPSPS gene or the 355 promoter gene was found three times in 2000 and eight times in 2001, in between 0.01 and 0.17% of soybean spout products, in 123 tests. Since the amount of GM genes was much less than the threshold limit of 3%, none of the 11 positive soybean-sprout samples needed to be libeled GM crops. Of these, seven sprout samples were from domestic seeds and four were from seeds imported from China. To find the contamination route, the raw materials, seed surface, floor of the storage room, area around the selection machine, surface of the packaging film and corn powder used in the package were tested. The 35S promoter gene was detected in only two samples of the corn powder (0.1%). Although we could not find the cause of the GM contamination, the sprout package film is one possibility. In total,8.9% of the soybean sprout tests were GM positive, but the amounts were much less than the threshold of 3%. This means that there are frequent false-positives and these would threaten the sprout industry if GMO were decided qualitatively. Food companies should make their safety data available to the public and make an effort to address people's concerns about GM food more openly. In addition, there is a need to establish a quantitative test for GM genes in sampled water and a sampling method for raw materials.

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Detection of Genetically Modified Soybean in Tofu and Biji using PCR and Immunological Methods (PCR 방법과 면역학적 분석법을 이용한 두부와 비지에서 GM 콩의 검출법)

  • Kim, Myo-Young;Kim, Jae-Hwan;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.77-81
    • /
    • 2005
  • To monitor GM soybean in soybean processed foods, tofu and biji, we prepared tofu and biji containing 0%, 1%, 3%, 5% and 100% GM soybean, respectively. We examined epsps gene inserted in soybean by PCR and EPSPS protein expressed in soybean using western blotting and lateral flow strip test to compare the sensitivity of these methods. A PCR product of 123 bp inserted in GM soybean was detected in all tofu and biji containing 1%, 3%, 5% and 100% GM soybean with the exception of 0% samples; however, the size of 600 bp inserted in GM soybean was only detected in tofu containing 100% soybean and in biji containing 5% and 100% soybean. In the protein level, GM soybean product was only detected in tofu and biji containing 100% GM soybean by western blotting. In addition, only biji containing 100% GM soybean was detected by lateral flow strip test. We concluded that in order to detect GM soybean efficiently in processed food, the PCR method is more sensitive than immunological methods. With the PCR method, small size product with approximately 100 bp in PCR product is sensitive to detect GM soybean in processed foods.

Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression of the gene in rice (과발현 형질전환벼에서 CCCH type zinc-finger protein 유전자 OsZF2 기능 분석)

  • Lee, Jung-Sook;Yoon, In-Sun;Yoon, Ung-Han;Lee, Gang-Seob;Byun, Myung-Ok;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We have previously isolated a CCCH type zinc-finger protein gene, OsZF2 (Oryza sativa Zinc Finger 2), from the cold-treated rice cDNA library. To investigate the potential role of OsZF2, transgenic rice lines over-expressing OsZF2 under the control of CaMV 35S promoter have been developed through Agrobacterium-mediated transformation. Elevated level of OsZF2 transcripts was confirmed by RNA gel blot analysis in transgenic rice. Under the 100 mM NaCl condition, the transgenic rice showed significantly enhanced growth rate in terms of shoot length and fresh weight, implicating that OsZF2 is likely to be involved in salt response of rice. In the field condition, however, the transgenic rice showed a dwarf phenotype and flowering time was delayed. Genome expression profiling analysis of transgenic plants using the 20K NSF rice oligonucleotide array revealed many up-regulated genes related to stress responses and signaling pathways such as chaperone protein dnaJ 72, salt stress-induced protein, PR protein, disease resistance proteins RPM1 and Cf2/Cf5 disease resistance protein, carbohydrate/ sugar transporter, OsWAK kinase, brassinosteroid LRR receptor kinase, and jasmonate O-methyltransferase. These data suggest that the CCCH type zinc-finger protein OsZF2 is a upstream transcriptional factor regulating growth and stress responsiveness of rice.

Development of glufosinate-tolerant GMO detection markers for food safety management (식품안전관리를 위한 제초제 glufosinate 특이적 GM 작물 검출마커 개발)

  • Song, Minji;Qin, Yang;Cho, Younsung;Park, TaeSung;Lim, Myung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • Over 500 genetically modified organisms (GMOs) have been developed since 1996, of which nearly 44% have glufosinate herbicide-tolerant traits. Identification of specific markers that can be used to identify herbicide-tolerant traits is challenging as the DNA sequences of the gene(s) of a trait are highly variable depending on the origin of the gene(s), plant species, and developers. To develop specific PCR marker(s) for the detection of the glufosinate-tolerance trait, DNA sequences of several pat or bar genes were compared and a diverse combination of PCR primer sets were examined using certified reference materials or transgenic plants. Based on both the qualitative and quantitative PCR tests, a primer set specific for pat and non-specific for bar was developed. Additionally, a set of markers that can detect both pat and bar was developed, and the quantitative PCR data indicated that the primer pairs were sensitive enough to detect 0.1% of the mixed seed content rate.

Analysis of junction site between T-DNA and plant genome in Lissorhoptrus oryzophilus resistance GM rice (벼물바구미 (Lissorhoptrus oryzophilus) 내충성 GM 벼에서 T-DNA와 게놈의 인접부위 분석)

  • Lee, Jin-Hyoung;Shin, Kong-Sik;Suh, Seok-Cheol;Rhim, Seong-Lyul;Lim, Myung-Ho;Woo, Hee-Jong;Qin, Yang;Kweon, Soon-Jong;Park, Soon-Ki
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • Four transgenic rice lines harboring insect-resistant gene cry3A showed ideal field performances characterized by high considerable resistance to rice water weevil (Lissorhoptrus oryzophilus Kuschel). In this study, we estimated the insertion number of foreign genes, and analyzed the flanking sequences of T-DNAs in rice genome. As a result, T-DNA of BT12R1 line was inserted in exon region of rice chromosome 10. Two copies of T-DNAs were inserted in line BT12R2. BT12R3 line was analyzed at only left border flanking sequence. BT12R4 line was confirmed one copy of foreign gene insertion at the position 24,516,607 ~ 24,516,636 of rice chromosome 5, accompanied by a deletion of 30 bp known genomic sequences. This intergenic position was confirmed none of expressed gene and any deletion/addition of T-DNA sequence. In conclusion, these molecular data of rice water weevil resistant Bt rice would be used to conduct the biosafety and environment risk assessment for GM crop commercialization.