1 |
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev 2019;6:402-20. https://doi.org/10.1093/nsr/nwz013
DOI
|
2 |
Craft WA. Fifty years of progress in swine breeding. J Anim Sci 1958;17:960-80. https://doi.org/10.2527/jas1958.174960x
DOI
|
3 |
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA14 targeting. Nucleic Acids Res 2011;39:e82. https://doi.org/10.1093/nar/gkr218
DOI
|
4 |
Trayhurn P, Temple NJ, Van Aerde J. Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig. Can J Physiol Pharmacol 1989;67:1480-5. https://doi.org/10.1139/y89-239
DOI
|
5 |
Commins SP, Jerath MR, Cox K, Erickson LD, Platts-Mills T. Delayed anaphylaxis to alpha-gal, an oligosaccharide in mammalian meat. Allergol Int 2016;65:16-20. https://doi.org/10.1016/j.alit.2015.10.001
DOI
|
6 |
Ghosh D, Kumar A, Sinha N. Targeted genome editing: a new era in molecular biology. In: Editors: Mondal S and Singh RL, editors. Advances in animal genomics. London, UK: Elsevier Inc.; 2021. pp. 75-89. https://doi.org/10.1016/B978-0-12-820595-2.00006-0
|
7 |
Knap PW, Rauw WM. Selection for high production in pigs. In: Rauw W, editor. Resource allocation theory applied to farm animal production. Wallingford, UK: CABI International; 2009. pp. 210-29.
|
8 |
Zhang J, Khazalwa EM, Abkallo HM, et al. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021;48:347-60. https://doi.org/10.1016/j.jgg.2021.03.015
DOI
|
9 |
Streubel J, Blucher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012;30:593-5. https://doi.org/10.1038/nbt.2304
DOI
|
10 |
Morbitzer R, Elsaesser J, Hausner J, Lahaye T. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 2011;39:5790-9. https://doi.org/10.1093/nar/gkr151
DOI
|
11 |
Burkard C, Opriessnig T, Mileham AJ, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol 2018;92:e00415-18. https://doi.org/10.1128/JVI.00415-18
DOI
|
12 |
Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 2017;84:926-3. https://doi.org/10.1002/mrd.22811
DOI
|
13 |
Guo C, Wang M, Zhu Z, et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection. Front Immunol 2019;10:1846. https://doi.org/10.3389/fimmu.2019.01846
DOI
|
14 |
Wang H, Shen L, Chen J, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci 2019;15:1993-2005. https://doi.org/10.7150/ijbs.34269
DOI
|
15 |
Lillico SG, Proudfoot C, King TJ, et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 2016;6:21645. https://doi.org/10.1038/srep21645
DOI
|
16 |
Xie Z, Pang D, Yuan H, et al. Genetically modified pigs are protected from classical swine fever virus. Plos Pathog 2018;14:e1007193. https://doi.org/10.1371/journal.ppat.1007193
DOI
|
17 |
Zhang Q, Yoo D. PRRS virus receptors and their role for pathogenesis. Vet Microbiol 2015;177:229-41. https://doi.org/10.1016/j.vetmic.2015.04.002
DOI
|
18 |
Zou Y, Li Z, Zou Y, Hao H, Li N, Li Q. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun 2018;498:940-5. https://doi.org/10.1016/j.bbrc.2018.03.085
DOI
|
19 |
Xiang G, Ren J, Hai T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci 2018;75:4619-28. https://doi.org/10.1007/s00018-018-2917-6
DOI
|
20 |
Li R, Zeng W, Ma M, et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 2020;29:149-63. https://doi.org/10.1007/s11248-020-00188-w
DOI
|
21 |
U. S. Food and Drug Admin. FDA Approves first-of-its-kind intentional genomic alteration in line of domestic pigs for both human food, potential therapeutic uses [internet]. c2020 [2020 Dec 14]. Available from: https://www.fda.gov/newsevents/press-announcements/fda-approves-first-its-kindintentional-genomic-alteration-line-domestic-pigs-bothhuman-food
|
22 |
Zhu X, Wei Y, Zhan Q, et al. CRISPR/Cas9- mediated biallelic knockout of IRX3 reduces the production and survival of somatic cell-cloned Bama minipigs. Animals 2020;10:501. https://doi.org/10.3390/ani10030501
DOI
|
23 |
Berg F, Gustafson U, Andersson L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: A genetic explanation for poor thermoregulation in piglets. PLoS Genet 2006;2:e129. https://doi.org/10.1371/journal.pgen.0020129
DOI
|
24 |
Zhang Q, Lin J, Huang J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA 2017;114:E9474-82. https://doi.org/10.1073/pnas.1707853114
DOI
|
25 |
Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014;156:935-49. https://doi.org/10.1016/j.cell.2014.02.001
DOI
|
26 |
Jahan M, Thomsona PC, Wynna PC, Wang B. The nonhuman glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem 2021;343:128439. https://doi.org/10.1016/j.foodchem.2020.128439
DOI
|
27 |
Merks JWM, Mathur PK, Knol EF. New phenotypes for new breeding goals in pigs. Animal 2012;6:4,535-43. https://doi.org/10.1017/S1751731111002266
DOI
|
28 |
Wang K, Ouyang H, Xie Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 2015;5:16623. https://doi.org/10.1038/srep16623
DOI
|
29 |
Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front Genet 2018;9:360. https://doi.org/10.3389/fgene.2018.00360
DOI
|
30 |
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020;154:190-202. https://doi.org/10.1016/j.theriogenology.2020.05.010
DOI
|
31 |
Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001;21:289-97. https://doi.org/10.1128/MCB.21.1.289-297.2001
DOI
|
32 |
Van Breedam W, Delputte PL, Van Gorp H, et al. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 2010;91(Pt 7):1659-67. https://doi.org/10.1099/vir.0.020503-0
DOI
|
33 |
Petersen GEL, Buntjer J, Hely FS, Byrne TJ, Whitelaw B, Doeschl-Wilson A. Gene editing in Farm Animals: A Step Change for Eliminating Epidemics on our Doorstep? bioRxiv 2021 April 19 [preprint]. https://doi.org/10.1101/2021.04.19.440533
DOI
|
34 |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23. https://doi.org/10.1126/science.1231143
DOI
|
35 |
Hou L, Shi J, Cao L, Xu G, Hu C, Wang C. Pig has no uncoupling protein 1. Biochem Biophys Res Commun 2017;487:795-800. https://doi.org/10.1016/j.bbrc.2017.04.118
DOI
|
36 |
Wang K, Tang X, Xie Z, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 2017;26:799-805. https://doi.org/10.1007/s11248-017-0044-z
DOI
|
37 |
Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CB. Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in African swine fever pathogenesis. J Virol 2011;85:6008-14. https://doi.org/10.1128/jvi.00331-11
DOI
|
38 |
Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011;29:149-53. https://doi.org/10.1038/nbt.1775
DOI
|
39 |
Paek HJ, Luo ZB, Choe HM, et al. Association of myostatin deficiency with collagen related disease-umbilical hernia and tippy toe standing in pigs. Transgenic Res 2021;30:663-74. https://doi.org/10.1007/s11248-021-00275-6
DOI
|
40 |
Shi I, Luo L, Eash J, Ibebunjo C, Glass DJ. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell 2011;21:835-47. https://doi.org/10.1016/j.devcel.2011.09.011
DOI
|
41 |
Lin J, Cao C, Tao C, et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes. J Mol Cell Biol 2017;9:364-75. https://doi.org/10.1093/jmcb/mjx018
DOI
|
42 |
de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn 2020;20:905-11. https://doi.org/10.1080/14737159.2020.1792781
DOI
|
43 |
Tu CF, Chuang CK, Hsiao KH, et al. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression. PLoS One 2019;14:e0217236. https://doi.org/10.1371/journal.pone.0217236
DOI
|
44 |
You W, Li M, Qi Y, et al. CRISPR/Cas9-mediated specific integration of Fat-1 and IGF-1 at the pRosa26 locus. Genes 2021;12:1027. https://doi.org/10.3390/genes12071027
DOI
|
45 |
Yang H, Zhang J, Zhang X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res 2018;151:63-70. https://doi.org/10.1016/j.antiviral.2018.01.004
DOI
|
46 |
Gu H, Zhou Y, Yang J, et al. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB J 2021;35:e21308. https://doi.org/10.1096/fj.202001812RR
DOI
|
47 |
Whitworth KM, Lee K, Benne JA, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 2014;91:78. https://doi.org/10.1095/biolreprod.114.121723
DOI
|
48 |
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a nonhuman sialic acid. Mol Aspects Med 2016;51:16-30. https://doi.org/10.1016/j.mam.2016.07.002
DOI
|
49 |
Chuang Ck, Chen CH, Huang CL, et al. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors. Anim Biotechnol 2017;28:174-81. https://doi.org/10.1080/10495398.2016.1246453
DOI
|
50 |
Yen CH, Tai HC, Peng SH, Yang TS, Tu CF. Scaffold derived from GGTA1 and CMAH double knockout pigs elicits only slight inflammation in a gene-edited pig model. Materialia 2020;14:100836. https://doi.org/10.1016/j.mtla.2020.100836
DOI
|
51 |
Xu K, Zhou Y, Mu Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. elife 2020;9:e57132. https://doi.org/10.7554/eLife.57132
DOI
|
52 |
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000;28:3361-9. https://doi.org/10.1093/nar/28.17.3361
DOI
|
53 |
Burkard C, Lillico SG, Reid E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens 2017;13:e1006206. https://doi.org/10.1371/journal.ppat.1006206
DOI
|
54 |
Tanihara F, Hirata M, Nguyen NT, et al. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim Biotechnol 2021;32:147-54. https://doi.org/10.1080/10495398.2019.1668801
DOI
|
55 |
Yang TS. Wild to domestic: body and organ size matter fitness in boars. In: Jenkins OP, editor. Advances in zoology research. NY, USA: Nova Science Publishers, Inc.; 2012. p. 187-200.
|
56 |
Hermesch S, Li L, Doeschl-Wilson AB, Gilbert H. Selection for productivity and robustness traits in pigs. Anim Prod Sci 2015;55:1437-47. https://doi.org/10.1071/AN15275
DOI
|
57 |
Ryu J, Prather RS, Lee K. Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 2018;9:5. https://doi.org/10.1186/s40104-017-0228-7
DOI
|
58 |
Christian M, Cermak T, Doyle EL, et al. Targeting DNA doublestrand breaks with TAL effector nucleases. Genetics 2010;186:757-61. https://doi.org/10.1534/genetics.110.120717
DOI
|
59 |
Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011;19:7-15. https://doi.org/10.1016/j.str.2010.12.003
DOI
|
60 |
Richter A, Streubel J, Boch J. TAL effector DNA-binding principles and specificity. In: Kuhn R, Wurst W, Wefers B, editors. Methods in Molecular Biology, vol 1338. New York, NY, USA: Humana Press; 2016. pp. 9-25. https://doi.org/10.1007/978-1-4939-2932-0_2
|
61 |
Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 2016;34:20-2. https://doi.org/10.1038/nbt.3434
DOI
|
62 |
Popescu L, Gaudreault NN, Whitworth KM, et al. Genetically edited pigs lacking CD163 show no resistance following infection with the ASFV isolate, Georgia 2007-1. Virology 2017;501:102-6. https://doi.org/10.1016/j.virol.2016.11.012
DOI
|
63 |
Whitworth KM, Rowland RRR, Petrovan V, et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 2019;28:21-32. https://doi.org/10.1007/s11248-018-0100-3
DOI
|
64 |
Prather RS, Rowland RRR, Ewen C, et al. An intact sialoadhesin (Sn-SIGLEC1-CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 2013;87:9538-46. https://doi.org/10.1128/JVI.00177-13
DOI
|
65 |
Alcami A, Carrascosa AL, Vinuela E. Interaction of African swine fever virus with macrophages. Virus Res 1990;17:93-104. https://doi.org/10.1016/0168-1702(90)90071-i
DOI
|
66 |
Sanchez-Torres C, Gomez-Puertas P, Gomez-del-Moral M, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 2003;148:2307-23. https://doi.org/10.1007/s00705-003-0188-4
DOI
|
67 |
Lillico SG, Proudfoot C, Carlson DF, et al. Live pigs produced from genome edited zygotes. Sci Rep 2013;3:2847. https://doi.org/10.1038/srep02847
DOI
|
68 |
McCleary S, Strong R, McCarthy RR, et al. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci Rep 2020;10:8951. https://doi.org/10.1038/s41598-020-65808-1
DOI
|
69 |
Deng P, Carter S, Fink K. Design, construction, and application of transcription activation-like effectors. In: Manfredsson F, Benskey M, editors. Viral vectors for gene therapy. Methods in molecular biology, vol 1937. New York, NY, USA: Humana Press; 2019. pp. 47-58. https://doi.org/10.1007/978-1-4939-9065-8_3
|
70 |
Cermak T, Starker CG, Voytas DF. Efficient design and assembly of custom TALENs using the golden gate platform. In: Pruett-Miller S, editor. Chromosomal mutagenesis. Methods in molecular biology (methods and protocols), vol 1239. New York, NY, USA: Humana Press; 2015. pp. 133-59. https://doi.org/10.1007/978-1-4939-1862-1_7
|
71 |
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 2017;3:eaao4774. https://doi.org/10.1126/sciadv.aao4774
DOI
|
72 |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149-57. https://doi.org/10.1038/s41586-019-1711-4
DOI
|
73 |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21. https://doi.org/10.1126/science.1225829
DOI
|
74 |
Lee K, Uh K, Farrell K. Current progress of genome editing in livestock. Theriogenology 2020;150:229-35. https://doi.org/10.1016/j.theriogenology.2020.01.036
DOI
|
75 |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 2017;551:464-71. https://doi.org/10.1038/nature24644
DOI
|
76 |
Grobet L, Poncelet D, Royo LJ, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 1998;9:210-3. https://doi.org/10.1007/s003359900727
DOI
|
77 |
Czaja W, Nakamura YK, Li N, et al. Myostatin regulates pituitary development and hepatic IGF1. Am J Physiol Endocrinol Metab 2019;316:E1036-49. https://doi.org/10.1152/ajpendo.00001.2019
DOI
|
78 |
Zou YL, Li ZY, Zou YJ, et al. Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integr Agric 2019;18:1329-36. https://doi.org/10.1016/S2095-3119(19)62694-8
DOI
|
79 |
Hubner A, Petersen B, Keil GM, Niemann H, Mettenleiter TC, Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci Rep 2018;8:1449. https://doi.org/10.1038/s41598-018-19626-1
DOI
|
80 |
Wang Q, Vlasova AN, Kenney SP, Saif LJ. Emerging and reemerging coronaviruses in pigs. Curr Opin Virol 2019;34:39-49. https://doi.org/10.1016/j.coviro.2018.12.001
DOI
|
81 |
Sternberg SH, LaFrance B, Kaplan M, Doudna JA. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 2015;527:110-3. https://doi.org/10.1038/nature15544
DOI
|
82 |
Tangvoranuntakul P, Gagneux P, Diaz S, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci USA 2003;100:12045-50. https://doi.org/10.1073/pnas.2131556100
DOI
|
83 |
Nitsch S, Mussolino C. Generation of TALE-based designer epigenome modifiers. In: Jeltsch A, Rots M, editors. Epigenome editing. Methods in molecular biology, vol 1767. New York, NY, USA: Humana Press; 2018. pp. 89-109. https://doi.org/10.1007/978-1-4939-7774-1_4
|
84 |
Josephs EA, Kocak DD, Fitzgibbon CJ, et al. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res 2015;43:8924-41. https://doi.org/10.1093/nar/gkv892
DOI
|
85 |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature 2016;533:420-4. https://doi.org/10.1038/nature17946
DOI
|
86 |
Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883-91. https://doi.org/10.1038/s41587-020-0453-z
DOI
|
87 |
Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997;17:71-4. https://doi.org/10.1038/ng0997-71
DOI
|
88 |
Qian L, Tang M, Yang J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 2015;5:14435. https://doi.org/10.1038/srep14435
DOI
|
89 |
Sun R, Leng Z, Zhai SL, Chen D, Song C. Genetic variability and phylogeny of current Chinese Porcine epidemic diarrhea virus strains based on spike, ORF3, and membranegenes. Sci World J 2014;2014:208439. https://doi.org/10.1155/2014/208439
DOI
|
90 |
Song D, Moon H, Kang B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin Exp Vaccine Res 2015;4:166-76. https://doi.org/10.7774/cevr.2015.4.2.166
DOI
|
91 |
Hu S, Qiao J, Fu Q, et al. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife 2015;4:e06951. https://doi.org/10.7554/eLife.06951
DOI
|
92 |
Schmidt SM, Belisle M, Frommer WF. The evolving landscape around genome editing in agriculture: Many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep 2020;21:e50680. https://doi.org/10.15252/embr.202050680
DOI
|
93 |
Entine J, Felipe MSS, Groenewald JH, et al. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res 2021;30:551-84. https://doi.org/10.1007/s11248-021-00257-8
DOI
|
94 |
Van Enennaam AL, De Figueiredo Silva F, Trott JF, Zilberman D. Genetic engineering of livestock: The opportunity cost of regulatory delay. Annu Rev Anim Biosci 2021;9:453-78. https://doi.org/10.1146/annurev-animal-061220-023052
DOI
|
95 |
Moehle EA, Rock JM, Lee YL, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 2007;104:3055-60. https://doi.org/10.1073/pnas.0611478104
DOI
|
96 |
Wang K, Tang X, Liu Y, et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Mol Ther Nucleic Acids 2016;5:e396. https://doi.org/10.1038/mtna.2016.101
DOI
|
97 |
Penrith ML, Bastos A, Chenais E. With or without a vaccine-A review of complementary and alternative approaches to managing african swine fever in resource-constrained smallholder settings. Vaccines 2021;9:116. https://doi.org/10.3390/vaccines9020116
DOI
|
98 |
Tanihara F, Hirata M, Otoi T. Current status of the application of gene editing in pigs. J Reprod Dev 2021;67:177-87. https://doi.org/10.1262/jrd.2021-025
DOI
|
99 |
Marzec M, Braszewska-Zalewska A, Hensel G. Prime editing: a new way for genome editing. Trends Cell Biol 2020;30:257-9. https://doi.org/10.1016/j.tcb.2020.01.004
DOI
|
100 |
Byrne J. New plant breeding techniques: EU Commission finds GMO legislation not fit for purpose [internet]; c2021 [2021 Apr 29]. Available from: https://www.feednavigator.com/Article/2021/04/29/EU-consultation-process-on-legalframework-for-NGTs-to-begin
|