• Title/Summary/Keyword: GC-1 cell

Search Result 235, Processing Time 0.025 seconds

Cytotoxic and Anti-inflammatory Activities of Lipids from the Nuruk (Rhizopus oryzae KSD-815) (누룩(Rhizopus oryzae KSD-815)으로부터 분리한 지질화합물의 세포독성 및 항염증 활성)

  • Kwak, Ho-Young;Lee, Sang-Jin;Lee, Dae-Young;Bae, Nark-Hyun;Jung, La-Koon;Hong, Sung-Youl;Kim, Gye-Won;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Nuruk is the Korean traditional Koji that contains various microorganisms and has been used to make the traditional fermented foods including alcoholic beverages. Rhizopus oryzae KSD-815 was isolated from the alcohol-fermenting Nuruk used for manufacturing traditional alcohol. In this study, the authors reported the isolation and identification of four lipids from the Nuruk (Rhizopus oryzae KSD-815) that inoculated wheat with Rhizopus oryzae KSD-815. The dried and powdered Nuruk (Rhizopus oryzae KSD-815) were extracted three times at room temperature with 80% aqueous MeOH. The extracts were partitioned with EtOAc, n-BuOH, and water, successively. The EtOAc extract was suspended in 80% MeOH and partitioned repeatedly with n-hexane. From the n-hexane fraction, four lipids were isolated through the repeated silica gel and ODS column chromatographies. According to the results of physico-chemical data including NMR, GC and MS, the chemical structures of the compounds were determined as linolenic acid methyl ester (1), palmitic acid methyl ester (2), linoleic acid (3), palmitic acid (4). Cytotoxicity was evaluated in huamn breast cancer cells, MDA-MB-231 and human hepatocarcinoma, SK-HEP-1 cells using MTT assay. Exposure of compounds 1 and 3 led to a dose-dependent inhibition of cell viability in both cancer cell lines. In addition, treatment of RAW264.7 cells with compound 3 caused inhibition of lipopolysaccharide/interferon-${\gamma}$-induced nitric oxide production.

Effects of In vitro Maturation Condition on Bovine IVF Embryos Development (체외성숙 조건이 소 체외수정란의 체외발달에 미치는 영향)

  • 최선호;류일선;김일화;박수봉;연성흠;진현수;서상욱;이충섭;손동수
    • Journal of Embryo Transfer
    • /
    • v.14 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • This study was performed to improve the development of the in vitro fertilized bovine embryos by the condition of in vitro maturation. COCs were matured in TCM 199 supplemented with 0.1% PVA, 10ng/ml EGF, Hormones (5$\mu\textrm{g}$/ml FSH, 10 IU hCG, 1 $\mu\textrm{g}$/ml estradiol 17-$\beta$) or granulsa cell+Hormones atmosphere 39$^{\circ}C$, 5% CO2, 95% air for 24hrs. Matured oocytes were fertilized with frozen-thawed semen capacitated with 5mM caffein in BO medium for 20 hrs. IVF embryos were cultured in TCM 199 containing with hormones(same as matured medium), 10% FBS and co-culture with bovine oviduct epitherial cells. Maturation rates of COCs were showed 73.8%, 78.5%, 83.2% and 87.6% respectively, and were significant differences between PVA, EGF, and Hormones, GC+Hormones(p<0.05). The cleavage rates of IVF embryos were revealed 72.5%, 78.4%, 82.3% and 84.2% and showed same tendency as maturation rates(p<0.05). The blastocysts matured by above maturation condition and cultured for 7~10 days after fertilization had 34.4, 43.6, 52.3 and 59.3 cells had no differences among the treatments. These results suggest that high molecules as a substitutes of serum and growth factor may induce nuclear resumption of COCs but we need more study to produce transferable IVF blastocysts by use of that agents.

  • PDF

Anti-apoptotic Effect of Steam Exploded Quercus variabilis

  • Jo, Jong-Soo;Jung, Ji Young;Nam, Jeong Bin;Park, Hyung Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.224-237
    • /
    • 2015
  • We hypothesized that the extract from steam exploded Q. variabilis might be cytoprotective for tenofibroblasts cells during oxidative stress. In the present study, the extracts obtained from steam exploded (severity log Ro 4.68) Q. variabilis contained high quantities of phenolics and flavonoids contents. Also, the extracts appear to have, on these tenofibroblasts, a protective effect against oxidative stress. Tenofibroblasts cells incubated with the extracts and stressed with $H_2O_2$ showed an increase in cell viability by MTT assay. The extracts is found to inhibit $H_2O_2$-induced apoptosis in tenofibroblasts cells, as shown by Annexin V/PI double staining analysis. Western blot data showed that in the extracts/$H_2O_2$-treated cells, the extracts inhibited the $H_2O_2$-dependent phosphorylation of ERK and p38. From these results, it is suggested that the extracts showed the protective effect on $H_2O_2$-mediated oxidative stress. The main chemical compounds of the extract was identified as 1,8-cineole by GC-MS analysis. The anti-apoptosis activity is accordingly believed to be attributable to the 1,8-cineole.

Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes (다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열)

  • Jung, Jaejoon;Bae, Seung Seob;Chung, Dawoon;Baek, Kyunghwa
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.299-301
    • /
    • 2018
  • Microbulbifer agarilyticus GP101 was isolated from the gut of a marine invertebrate Turbo cornutus and capable of degrading polysaccharide such as agar, alginate, and ${\kappa}$-carrageenan constituting algal cell wall. To obtain genomic basis of polysaccharide-degrading activity, we sequenced genome of strain GP101. The genome consists of 4,255,625 bp, 3,458 coding sequences with 55.4% G + C contents. BLASTP search revealed the presence of seven agarases, five alginate lyases, ten glucanases, four chitinases, two xylanases, one ${\kappa}$-carrageenase, and one laminarinase. The genomic data of strain GP101 will provide potential uses in the bioconversion process of diverse polysaccharide into bioenergy and biochemicals.

Isolation of Anticarcinogenic Isoflavone-conjugated Glycoproteins from a Submerged Liquid Culture of Agaricus blazei Mycelia by the Autolysis Process (신령버섯균사체 액체배양물의 자가분해에 의한 항암성 isoflavone-conjugated glycoprotein 분리)

  • Kim, So Young;Kim, Young Suk;Jang, Joung Soon;Kim, Boh Hyun;Rakib, Abdur Md.;Kim, Gon Sup;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1316-1324
    • /
    • 2014
  • Most beta-glucans obtained from various fruit bodies of mushrooms and mushroom mycelial cultures have high-molecular weight glycoproteins, conjugated with beta-glucans. We report that isoflavone-conjugated glycolproteins (designated as gluvone) were isolated and exhibited stronger anticarcinogenic activities. Agaricus blazei mycelia (ABM) was cultured in a liquid medium containing soybean flakes for 14 days. The liquid culture was autolyzed by incubating at $53^{\circ}C$ (pH 5.5) for 3 h. A crude glycoprotein (CGP) fraction with a cytotoxic effect on a mouse ascite cancer cell line (S-180) and a human breast cancer cell line (MCF-7) was isolated from the autolyzed ABM cultures by 80% ethanol treatment. Gluvone was isolated from the CGP with Sephadex G-75 column chromatography. It exhibited a stronger anticancer effect than CGP against the S-180 cell-induced female ICR mouse ascites carcinogenesis. Gluvone with 9,400 daltons was identified as a glycoprotein conjugated with isoflavone. According to HPLC and GC analysis, in conjunction with $^1H$-NMR spectral analysis, it contained 60% carbohydrates (glucose, fructose, and ribose), 31% protein, and 2% isoflavone (daidzein and genistein), which is a novel material. These results indicate that a strong anticarcinogenic gluvone was isolated from the autolyzed product of a submerged liquid culture of ABM, suggesting that autolysis could be a useful tool to produce antitumor agents.

Quality Characteristics of Takju, Yakju, Spirit made by Cereal Nuruks (곡류 누룩으로 제조한 탁주, 약주, 증류주의 품질 특성)

  • Jeong, Jae-Hong;Chai, He-Suk;Lee, Yun-Hi;Kim, Jae-Min;Lee, Jeong-Hoon
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.267-280
    • /
    • 2015
  • This study was carried out to evaluate the quality characteristics of Takju, Yakju, Spirit made by various cereal Nuruks which were made by Jokuk(whole wheat), Bunkuk(wheat flour), Maekkuk(whole barley). pH, Brix, cell number of yeast, alcohol content, flavors, organic acid, and sensory evaluation of brews were employed to analyze current study. Results showed that pH value of brews during fermentation decreased, while Brix value increased. In addition, alcohol contents increased up to 11 day's fermentation, but there were no significant differences among Jokuk, Bunkuk and Maekkuk(p<0.05). Cell numbers of yeast dramatically increased up to 5 day's fermentation, and then decreased. After 13 day's fermentation cell numbers of yeast were similar among Jokuk, Bunkuk and Maekkuk. In terms of analysis of flavor components, acetone and n-amyl alcohol were not detected in all brews, however fusel oil level was 494.65 mg/L in Maekkuk, and 525.4 mg/L in Bunkuk. Lactic acid showed the highest level in organic acid analysis. Furthermore, Jokuk and Maekkuk showed highest score in Takju, Maekkuk showed highest score in Yakju in sensory evaluation, although Jokuk, Bunkuk, and Maekkuk revealed similar score in spirit.

Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils (Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과)

  • Chung Moon-Gyu;Yun Hye Sun;Kim Hyung Woo;Nam Jin Sik;Chung Chung Wook;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

Effect of Bovine Granulosa Cell Culture Supernatant on In Vitro Development of Mouse Embryos (소 과립막세포의 배양 상층액이 생쥐배의 체외발달에 미치는 영향)

  • Lee, Sang-Bum;Moon, Sin-Hong;Kim, Seon-Ku
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1764-1768
    • /
    • 2009
  • This study was carried out to examine a concentration of steroid hormones and in vitro development of mouse embryos in culture supernatant of bovine granulosa cells (GC). To obtain the culture supernatant, granulosa cells were retrieved from mature follicles (6~15 mm diameter) and immature follicles (2~5 mm diameter) of bovine ovary and were cultured, respectively, in media of Ham's F-10 with 15% FCS for 16 days. Mature and immature granulosa cells formed their monolayers easily and showed similar growth patterns in culturing. There was no morphological difference between mature and immature granulosa cells. High levels of both progesterone and estradiol were detected in the culture supernatant of mature granulosa cells and immature granulsa cells, and the endocrine profiles of the two types of cells were similar. Progesterone secretion of granulosa cells was high in the late stage of culturing and estradiol secretion was high in the early stage of culturing. In vitro development rates of mouse embryos to morula, blastocyst and hatched blastocyst were significantly (p<0.05) higher in culture supernatant of mature granulosa cells (92.7%, 78.1% and 34.5%) and in culture supernatant of immature granulosa cells (96.4%, 78.5% and 26.8%) than in Ham's F-10 (86.7%, 41,7% and 13.3%). However, there was no difference between the culture supernatant of mature granulosa cells and the culture supernatant of immature granulosa cells in the development of embryos.

Can different agents reduce the damage caused by bleaching gel to pulp tissue? A systematic review of basic research

  • Leticia Aparecida Silva Batista;Alexandre Henrique dos Reis-Prado;Hebertt Gonzaga dos Santos Chaves;Lara Cancella de Arantes;Luis Fernando Santos Alves Morgan;Carolina Bosso Andre;Thais Yumi Suzuki;Francine Benetti
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.39.1-39.23
    • /
    • 2023
  • Objectives: This study aimed to investigate the effectiveness of different topical/systemic agents in reducing the damage caused by bleaching gel to pulp tissue or cells. Materials and Methods: Electronic searches were performed in July 2023. In vivo and in vitro studies evaluating the effects of different topical or systemic agents on pulp inflammation or cytotoxicity after exposure to bleaching agents were included. The risk of bias was assessed. Results: Out of 1,112 articles, 27 were included. Nine animal studies evaluated remineralizing/anti-inflammatories agents in rat molars subjected to bleaching with 35%-38% hydrogen peroxide (HP). Five of these studies demonstrated a significant reduction in inflammation caused by HP when combined with bioglass or MI Paste Plus (GC America), or following KF-desensitizing or Otosporin treatment (n = 3). However, orally administered drugs did not reduce pulp inflammation (n = 4). Cytotoxicity (n = 17) was primarily assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human dental pulp cells and mouse dental papilla Cell-23 cells. Certain substances, including sodium ascorbate, butein, manganese chloride, and peroxidase, were found to reduce cytotoxicity, particularly when applied prior to bleaching. The risk of bias was high in animal studies and low in laboratory studies. Conclusions: Few in vivo studies have evaluated agents to reduce the damage caused by bleaching gel to pulp tissue. Within the limitations of these studies, it was found that topical agents were effective in reducing pulp inflammation in animals and cytotoxicity. Further analyses with human pulp are required to substantiate these findings.

Skin Penetration and Local Irritation of Ethyl Glycolate, a Potential Transdermal Prodrug (경피용 프로드럭인 에칠 글리콜레이트의 국소자극 및 피부투과성)

  • Yang, Sung-Woon;Ha, Yong-Ho;Kim, Johng-Kap;Choi, Young-Wook
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 1996
  • Hyperkeratinization is a dermatologic disorder, which is due to the increase of corneocyte cohesion force. Glycolic acid, an alpha hydroxy acid(AHA), has been used to breakdown the hyperkeratinization processes. However, it has a problem of skin irritation when applied topically, due to the strong acidity especially in high concentration. A molecular optimization of glycolic acid has been tried to reduce the skin irritation by the way of prodrug formation. Ethyl glycolate was synthesized by the esterification of glycolic acid with ethanol in acidic conditions in the presence of sulfuric acid, and examined under the spectroscopic trials, such as UV, IR, $^1H$-NMR, and GC-MS. The physicochemical and biopharmaceutical properties of the prodrug were also evaluated. Through the toxicological tests of both skin irritation and eye mucous irritation, it has been proved that ethyl glycolate was less irritant than glycolic acid, since the pH value of synthetic prodrug was higher than that of glycolic acid. In the penetration test through nude mouse skin by diffusion cell, ethyl glycolate was continuously hydrolyzed to glycolic acid, which was assayed form the receptor compartment. It was obtained that the penetrated amount of ethyl glycolate was five times higher than that of glycolic acid. These results suggest that ethyl glycolate might be a successful prodrug of glycolic acid to reduce the skin irritation and to increase the skin penetration as well.

  • PDF