Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8047

Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes  

Jung, Jaejoon (National Marine Biodiversity Institute of Korea)
Bae, Seung Seob (National Marine Biodiversity Institute of Korea)
Chung, Dawoon (National Marine Biodiversity Institute of Korea)
Baek, Kyunghwa (National Marine Biodiversity Institute of Korea)
Publication Information
Korean Journal of Microbiology / v.54, no.3, 2018 , pp. 299-301 More about this Journal
Abstract
Microbulbifer agarilyticus GP101 was isolated from the gut of a marine invertebrate Turbo cornutus and capable of degrading polysaccharide such as agar, alginate, and ${\kappa}$-carrageenan constituting algal cell wall. To obtain genomic basis of polysaccharide-degrading activity, we sequenced genome of strain GP101. The genome consists of 4,255,625 bp, 3,458 coding sequences with 55.4% G + C contents. BLASTP search revealed the presence of seven agarases, five alginate lyases, ten glucanases, four chitinases, two xylanases, one ${\kappa}$-carrageenase, and one laminarinase. The genomic data of strain GP101 will provide potential uses in the bioconversion process of diverse polysaccharide into bioenergy and biochemicals.
Keywords
Microbulbifer; agarase; carbohydrate-active enzyme; carrageenan; polysaccharide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee SB, Kim JA, and Lim HS. 2016. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl. Microbiol. Biotechnol. 100, 4109-4121.   DOI
2 Michel G and Czjek M. 2013. Polysaccharide-degrading enzymes from marine bacteria, pp. 429-464. In Trincone, A. (ed.), Marine enzymes for biocatalysis: Sources, biocatalytic characteristics and bioprocesses of marine enzymes, Ed. Elsevier Science, UK.
3 Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, and Horikoshi K. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable betaagarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64, 505-514.   DOI
4 Parte AC. 2018. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68, 1825-1829.   DOI
5 Swift SM, Hudgens JW, Heselpoth RD, Bales PM, and Nelson DC. 2014. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS One 9, e112939.   DOI
6 Vijayaraghavan R and Rajendran S. 2012. Identification of a novel agarolytic gamma-proteobacterium Microbulbifer maritimus and characterization of its agarase. J. Basic Microbiol. 52, 705-712.   DOI
7 Zhu Y, Wu L, Chen Y, Ni H, Xiao A, and Cai H. 2016. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol. Res. 182, 49-58.   DOI
8 Lee YS and Choi YL. 2016. Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221. J. Biotechnol. 229, 31-32.   DOI
9 Fu XT and Kim SM. 2010. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8, 200-218.   DOI
10 Lee SB, Cho SJ, Kim JA, Lee SY, Kim SM, and Lim HS. 2014. Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess. Eng. 19, 866-878.   DOI