• 제목/요약/키워드: GC/FID, GC/MSD

Search Result 24, Processing Time 0.023 seconds

Method Development for the Odor-Active Compound Determination by Gas Chromatography/Flame Ionization Detection/Olfactometry (냄새성분 측정을 위한 기체 크로마토그래피/불꽃이온화 검출/후각 검출법의 개발)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Yang, Hee-Hwa
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.180-190
    • /
    • 2001
  • Oder-active compounds are complex in a sample. These compounds are usually analyzed by GC or GC/MSD while such analytical measurement can quantify specific volatile organic compounds, it has limitations in identifying odor-active compounds. To resolve this problem, GC-Sniffing or GC-Olfactometry method has been attempted. In this study, GC/FID/Olfactometry system was developed. This system can simultaneously sniff and detect GC effluents by traditional GC combined with human olfactory system. The time gap between FID and ODP response was dependent on the kinds and concentrations of chemicals and panels, with more volatile, stronger and shorten breath cycle panel showing narrow time gap. Thus, clear relationship between FID and ODP should be considered to identify the odor-active compounds.

  • PDF

Gas Chromatographic Analysis of TDI, MDI and HDI Using 2-Chlorobenzyl Alcohol and 2,4-Dichlorobenzyl Alcohol Derivatives (2-클로로벤질 알코올 및 2,4-디클로로벤질 알코올 유도체를 이용한 TDI, MDI 및 HDI의 가스크로마토그래피 분석)

  • Yun, Ju-Song;Park, Jun-Ho;Lee, Kang-Myoung;Choi, Hong-Soon;Cho, Young-Bong;Koh, Sang-Baek;Cha, Bong-Suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.222-232
    • /
    • 2006
  • Objectives: The objective of this study was to propose the total isocyanate analytical method which involves derivation of 2,4-toluene diisocyanate(2,4-TDI), 2,6-toluene diisocyanate(2,6-TDI), 4,4'-methylenediphenyl diisocyanate(4,4'-MDI) and 1,6-hexamethylene diisocyanate(1,6-HDI) using 2-chlorobenzyl alcohol(2-CBA) or 2,4-dichlorobenzyl alcohol(2,4-DCBA), and analyzing of hydrolysate of the synthesized urethane with the gas chromatography(GC)/flame ionization detector(FID), GC/pulsed discharge ionization detector-electron capture detector(PD-ECD) and GC/mass selective detector(MSD). Methods: Urethanes were synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI to 2-CBA or 2,4-DCBA. Urethanes was verified by TLC, HPLC/UVD and GC/MSD. For field application, the most suitable condition that 2-CBA coated in glass fiber filter removed completely and urethanes were not removed was searched. 2-CBA generated from hydrolysis of urethanes according to hydrolysis conditions. Diisocyanates were collected on field air and analyzed. Results: Urethanes which were white and solid phase synthesized by reacting 2,4-TDI, 2,6-TDI, 4,4'-MDI, 1,6-HDI and 2-CBA or 2,4-DCBA. And urethanes were verified by TLC, HPLC/UVD and GC/MSD. The most suitable conditions to remove 2-CBA coated in glass fiber filter were $87^{\circ}C$ and 20 mmHg and urethanes were not removed under same condition. Hydrolysis yields of urethanes were 99 % to 111 %. 2-CBA, the hydrolysate of urethanes was analyzed by GC/FID, GC/PD-ECD and GC/MSD. Conclusions: Simultaneous analysis of 2,4-TDI, 2,6-TDI, 4,4'-MDI and 1,6-HDI deriving with 2-CBA and 2,4-DCBA, along with a total isocyanate analysis, was feasible with GC/FID, GC/PD-ECD and GC/MSD. This result will be a guide of further study on total isocyanate analysis.

A Survey of Di-n-butyl Phthalate Used in Manicures (매니큐어 중 Di-n-butyl Phthalate 사용실태 조사연구)

  • 윤미혜;엄미나;도영숙;김재관;손종성;김기철;임준래
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2002
  • This study was performed to survey and evaluate the contents of di-n-butyl phthalate(DBP) in manicures by GC/FID and GC/MSD. The tested samples were 61 domestic and 41 imported manicures circulating in Seoul and Kyonggi-Do area. DBP was detected respectively in the rate of 93.4% for domestic manicures and 43.9% for imported manicures. The contents of DBP in domestic and imported manicures were 11.6g/17g~74.7g/kg and 28.2g/kg~78.9g/kg respectively. DBP was used in domestic and imported manicures with the exception of Japan products. Therefore, the alternative material for DBP should be developed and used to ensure consumers' safety.

Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis (흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

Flavor Characteristics of Volatile Compounds from Shrimp by GC Olfactometry (GCO) (GC Olfactometry를 이용한 새우의 휘발성성분 특성평가)

  • 이미정;이신조;조지은;정은주;김명찬;김경환;이양봉
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.953-957
    • /
    • 2002
  • Volatile compounds from shrimp whole body (SWB) and shrimp shell waste (SSW) were isolated, and identified by the combination of SDE (simultaneous steam distillation and solvent extraction), GC (gas chromatography, HP-5890 plus)and MSD (mass selective detecter) or olfactometry. The peak numbers isolated from SWB and SSW were 20 and 46, respectively. The amounts of the volatile compounds isolated from SSW were higher than those of SWB. SWB produced more low-boiling compounds below 7$0^{\circ}C$ and SSW did more high boiling compounds over 10$0^{\circ}C$. The volatile compounds identified from SSW were 9 pyrazines,5 acids,4 aldehydes, and 4 alcohols. These volatile compounds were evaluated by aroma extraction dilution analysis and gas chromatography olfactometry (GCO). Some compounds which were not detected by GC-FID and GC-MSD were found to be a strong shrimp flavor of log$_3$ FD 3 value by GCO. Strong shrimp odors were detected in low temperature while nutty aromatic odors and unpleasant oily smells were found in high temperature.

Identification of the impurities in the technical product of Atonic (Atonic 원제의 부성분 구조 확인)

  • Kyung, Kee-Sung;Chung, Chang-Kook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • In order to determine the amounts of impurities and to identify the chemical structures of the impurities in the technical product of the plant growth regulator Atonic, the extracts of diethyl ether and dichloromethane were analyzed with GC-FID and GC-MSD. resulting in detection of five impurities and identification of their chemical structures. The amount of the active ingredient atonic in the technical product was about 84% and those of the impurities ranged from 0.24 to 10.74%. The identified impurities in this technical product are 2-methoxyphenol (guaiacol, m/z 124), 2-chloro-6-methoxyphenol and/or 4-chloro-6-methoxyphenol (m/z 158), 1,2-dimethoxy-4-nitrobenzene (m/z 183), and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (m/z 220), suggesting that they are not hazardous impurities.

Simultaneous determination of aromatic material causing allergic in children's products by Gas Chromatography (어린이 제품 중 가스 크로마토그래피를 이용한 알러지 유발 방향성 물질의 동시분석법)

  • Ko, Kyeong Mok;Rhu, Chan Joo;Kim, Jong Won;Lee, Seok Ki
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Twenty-two allergy-induced aromatics in children were analyzed using a gas chromatography flame ionization detector (GC-FID) and gas chromatography mass spectrometer (GC-MSD). Analytes were extracted using an automatic Soxhlet extractor and centrifuged for 10 min in a fast freezing centrifuge, and the supernatant was transferred into a 2 mL vial and injected in split mode. Under the established conditions, the calibration curve showed linearity with a correlation coefficient of 0.996 or more. A wide range of sensitivity of 6.7 to 1,859,839 depending on the device characteristics and detector used was shown. The detection limit of the device was 0.0032 to $0.0335{\mu}g/mL$, and the maximum detection limit was less than $0.1{\mu}g/mL$. The detection limit of the method ranged from 0.0033 to $0.1161{\mu}g/mL$. In addition, the limit of quantification ranged from 0.0100 to $0.5422{\mu}g/mL$, with a level of precision ranging from 0.21 % to 4.89 % and a degree of accuracy ranging from 89 % to 111 %. The analytical method developed in this study was applied to commercial products.

Volatile Compounds of Mustard Leaf (Brassica juncea) Kimchi and Their Changes during Fermentation (청갓 김치의 휘발성 성분과 발효 숙성시의 변화)

  • Pyo, Young-Hee;Kim, Jung-Soo;Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • Fourteen volatile compounds isolated by distillation under reduced pressure from Mustard Leaf(Brassica juncea) Kimchi were identified by the GC/FID and GC/MSD. They were composed of 63% of hydrocarbons and acid and 30% of isothiocyantes and their related components in relative amount; Volatile isothiocyanates and their related components such as 2-phenylethyl isothiocyanate, benzothiazole, 2-methyl benzothiazole and 2-(3H)-benzothiazolone, which are reported to be responsible for the pungent flavor of mustard products, were found in Mustard Leaf Kimchi. These volatile components were remarkably decreased during the fermentation of Mustard Leaf Kimchi.

  • PDF

Determination of Nicotine and Other Minor Alkaloids in Tobacco Leaves by GC/MS (GC/MS를 이용한 잎담배 중 알칼로이드 함량 분석)

  • Lee Jeong-Min;Min Hye-Jung;Kim Yong-Ha;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.100-106
    • /
    • 2005
  • To obtain the optimum condition for analysis of 10 alkaloids in tobacco leaves, such as nicotine, nornicotine, anatabine, anabasine, myosmine, cotinine, 2,3'-dipyridyl, $\beta-nicotyrine,\;\beta-nornicotyrine\;and\;\beta-formylnornicotin$, 5 types of extraction method were investigated by GC-FID and GC/MS. The optimum condition of alkaloid extraction was achieved by using methanol:dichloromethane(1:3, v/v) after NaOH treatment. The use of mass selective detector (MSD) provided unambiguous nicotine related alkaloid analysis. Alkaloids in various tobacco leaves were extracted with the optimum extraction condition and quantified by GC/MS/SIM mode. Compared with concentrations of alkaloids among the various tobacco leaves, the concentration of alkaloids was generally in the order burley > flue-cured > oriental tobacco. In flue-cured tobacco leaves, the order of concentration of alkaloids was nicotine > anatabine > nornicotine > $\beta-nicotyrine\;>\;\beta-formylnornicotine\; >\;myosmine\;>\;2,3'-dipyridyl\;>\;cotinine\;>\;anabasine\;>\;\beta-nornicotyrine$. However, in the case of burley and oriental tobacco leaves, the concentration of nornicotine was higher than that of anatabine.

Studies on Volatile Compounds in Lipoxygenase Deficient-soybean and Its Products (Lipoxygenase 결핍 콩과 그 가공품의 휘발성 성분 분석)

  • 김수희;이양봉;황인경
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • Lipoxygenase(LOX) in soybeans is responsible for beany flavors which limit the wide utilization of soybeans to foods. This study was conducted to analyze beany flavor compounds of the normal Hwagkeumkong and LOX-deficient soybean cultivars, Jinpumkong which lacks L-2, L-3, and Jinpumkong 2 which lacks all L-1, L-2, L-3. Using the combination of dynamic headspace sampling and gas chromatography-mass selective detector(DHS-GC-MSD) for analyzing volatile compounds, hexanal and hexanol were identified in whole soy flour of all three soybena cultivars. Hwangkeumkong had more volatile compounds than Jinpumkong and Jinpumkong 2 in defatted soy flour. Hexanal and acetic acid were identified in soy milk of all three soybean cultivars but Hwangkeumkong had more volatile compounds than Jinpumkong 2. From the analysis with a static headspace sampling(SHS) and GC-MSD the major compounds were hexanal, acetic acid, 1-hexanol, and 1-octen-3-ol. The content of acetic acid was similar among three cultivars. But contents of hexanal and pentanal in Jinpumkong 2 were less than that of Jinpumkong and Hwangkeumkong. Using GC-FID, Jinpumkong 2 had less contents of hexanal and pentanol than Hwangkeumkong in whole soy flour and defatted soy flour. In this study, LOX-deficient soybean cultivars showed less hexanal, pentanol and other compounds than the normal Hwangkeumkong. However quite amount of beany flavor compounds were identified in Jinpumkong and Jinpumkong 2. So further studies are required to characterize LOX isozymes, to understand the mechanisms of beany flavors production, and to develop some other methods for removing beany flavor.

  • PDF