• Title/Summary/Keyword: GBP1

Search Result 106, Processing Time 0.023 seconds

Effect of the Ethanol Extract of Propolis on Formation of Streptococcus mutans Biofilm

  • Park, Bog-Im;Jung, Yeon-Woo;Kim, Young-Hoi;Lee, Sang-Moo;Kwon, Lee-Seong;Kim, Kang-Ju;An, So-Youn;Choi, Na-Young;You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.253-262
    • /
    • 2016
  • Streptococcus mutans (S. mutans) is one of the most important bacteria in the formation of dental plaque and dental caries. S. mutans adheres to an acquired pellicle formed on the tooth surface, and aggregates with many oral bacteria. It initiates plaque formation by synthesizing glucan from sucrose, which is catalyzed by glucosyltransferases. Propolis is a resinous mixture produced by honeybees, by mixing saliva and beeswax with secretions gathered from wood sap and flower pollen. Bees prevent pathogenic invasions by coating the propolis to the outer and inner surface of the honeycomb. Propolis has traditionally been used for the treatment of allergic rhinitis, asthma and dermatitis. We investigated the inhibitory effects of propolis ethanol extract on biofilm formation and gene expression of S. mutans. The biofilm formation of S. mutans was determined by scanning electron microscopy (SEM) and safranin staining. We observed that the extract of propolis had an inhibitory effect on the formation of S. mutans biofilms at concentrations higher than 0.2 mg/ml. Real-time PCR analysis showed that the gene expression of biofilm formation, such as gbpB, spaP, brpA, relA and vicR of S. mutans, was significantly decreased in a dose dependent manner. The ethanol extract of propolis showed concentration dependent growth inhibition of S. mutans, and significant inhibition of acid production at concentrations of 0.025, 0.05, 0.1 and 0.2 mg/ml, compared to the control group. These results suggest that the ethanol extract of propolis inhibits gene expression related to biofilm formation in S. mutans.

Optimal Parameter Values of Optical Phase Conjugator depending on Extinction Ratio of WDM Channel Signals (WDM 채널 신호의 소광비에 따른 광 위상 공액기의 최적 파라미터 값)

  • Lee, Seong-Real;Lee, Young-Gyo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.187-195
    • /
    • 2007
  • In this paper, the optimal values of optical phase conjugator (OPC) position and dispersion coefficients of fiber sections depending on the extinction ratio of WDM channel signals are numerically induced in WDM system with OPC used to compensate the distorted signals due to nonlinearities and chromatic dispersion. The considered WDM system consist of 16 channels with 40 Gbps data rate and each channel is assumed to be NRZ format with the extinction ration of 5 dB, 10 dB, or 20 dB. It is confirmed that the only one parameter among two considered parameters is used to effectively compensate overall WDM channels, and each optimal value of these parameters independent on the extinction ratio. That is, overall WDM channels are excellently transmitted within 2 dB power penalty whether by positioning OPC into 496 km or by setting dispersion coefficient difference between two fiber sections to 0.055 ps/nm/km, these optimal values are not dependence on the extinction ratio.

  • PDF

Differential Bandwidth Allocation Method using Upstream Bandwidth Wavelength Division of EPON (상향트래픽 파장분할 EPON에서 우선순위 큐를 고려한 차등대역폭 할당방법)

  • Seo, Chang-Jin;Jang, Yong-Suk
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • The subscriber access network is cause of the bottleneck phenomenon because equipment and infrastructure were not originally designed for busty high-bandwidth traffic between MAN(Metro Area Network) and LAN(Local Area Network). Whether riding on shorter copper drops or optical fiber, Ethernet is emerging as the future broadband protocol of choice, offering plug and play simplicity, and low cost. EPON(Ethernet Passive Optical Network) combines point-to-multipoint optical infrastructure with low-cost high-bandwidth Ethernet. The future broadband access network will be a combination of point-to-point and point-to-multipoint Ethernet, optimized for transporting IP data, as well as time critical voice and video. EPON is being considered as a novel communications infrastructure for next-generation broadband access network for the convergence of low-cost Ethernet equipment and low-cost fiber infrastructure. But, EPON has a problem with duplex multimedia services. It is the insufficiency of bandwidth for upstream. Because all ONUs use a shared transmission media for upstream. In this paper, we addressed the problem of upstream bandwidth in EPONs. We presented a wavelength division EPON supporting QoS in the differentiated services framework.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Design of a Clock and Data Recovery Circuit Using the Multi-point Phase Detector (다중점 위상검출기를 이용한 클럭 및 데이터 복원회로 설계)

  • Yoo, Sun-Geon;Kim, Seok-Man;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The 1Gbps clock and data recovery (CDR) circuit using the proposed multi-point phase detector (PD) is presented. The proposed phase detector generates up/down signals comparing 3-point that is data transition point and clock rising/falling edge. The conventional PD uses the pulse width modulation (PWM) that controls the voltage controlled oscillator (VCO) using the width of a pulse period's multiple. However, the proposed PD uses the pulse number modulation (PNM) that regulates the VCO with the number of half clock cycle pulse. Therefore the proposed PD can controls VCO preciously and reduces the jitter. The CDR circuit is tested using 1Gbps $2^{31}-1$ pseudo random bit sequence (PRBS) input data. The designed CDR circuit shows that is capable of recovering clock and data at rates of 1Gbps. The recovered clock jitter is 7.36ps at 1GHz and the total power consumption is about 12mW. The proposed circuit is implemented using a 0.18um CMOS process under 1.8V supply.

A Study on the Test Results and Implementation of Correlated Result Saving System using the Gluster File System (Gluster 파일시스템을 이용한 상관자료 수집 시스템 구축 및 시험고찰)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.53-60
    • /
    • 2016
  • In this paper, we introduce the implementation and test results of a new method of correlated result storage to achieve the full performance of the Daejeon hardware correlator. Recently, the observation of 8 Gbps speed, which is the maximum observational standard of KVN(Korean VLBI Network), has been performed. The correlation processing using the Daejeon hardware correlator is also required. Therefore, a new correlation result storage introduction has become necessary. The maximum correlation result output speed of the Daejeon hardware correlator is 1.4 GB/sec per 25.6 ms integration time. The conventional correlation result storage system can not cope with the maximum correlation output speed of the Daejeon hardware correlator, and the output speed is limited to 1/4. That is, among the four input ports of the Daejeon hardware correlator, the three inputs are limited to correspond to the observation rate of 1 Gbps. This new storage system uses the Gluster file system among many of the latest technologies used in storage systems. In tests that meet the maximum output rate of 1.4 GB/sec for the Daejeon hardware correlator, 350 MB/sec for each of the four optical outputs, resulting in 1.4 GB/sec in total.

Study on Effective 5G Network Deployment Method for 5G Mobile Communication Services (5G 이동통신 서비스를 위한 효율적인 5G 망구축 방안에 관한 연구)

  • CHUNG, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.353-358
    • /
    • 2018
  • We herein analyze the service traffic characteristics and spectrum of the 5G mobile communication and suggest the effective 5G network deployment method for 5G mobile communication services. The data rates of the 5G mobile communication are from several kbps (voice and IoT) up to 1 Gbps (hologram, among others). The 5G mobile communication services show the diverse cell coverage environments owing to the use of diverse service data rates and multiple spectrum bands. To effectively support the 5G mobile communication services, the network deployment requires the optimization of the service coverages for new service environments and multiple spectrum bands. Considering the 5G spectrum bandwidth debated at present, if the 5G services of 100 Mbps can be supported in the 200 m cell edge using the 3.5 GHz spectrum bands, the 5G services of the 1 Gbps hologram and 500-Mbps 4k UHD can be supported in the cell edges of 50 m and 100 m using the 28 GHz spectrum bands. Therefore, the 5G services can be supported effectively by the 5G network deployment using spectrum portfolio configurations to match the diverse 5G services and multiple bands.

8.1 Gbps High-Throughput and Multi-Mode QC-LDPC Decoder based on Fully Parallel Structure (전 병렬구조 기반 8.1 Gbps 고속 및 다중 모드 QC-LDPC 복호기)

  • Jung, Yongmin;Jung, Yunho;Lee, Seongjoo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.78-89
    • /
    • 2013
  • This paper proposes a high-throughput and multi-mode quasi-cyclic (QC) low-density parity-check (LDPC) decoder based on a fully parallel structure. The proposed QC-LDPC decoder employs the fully parallel structure to provide very high throughput. The high interconnection complexity, which is the general problem in the fully parallel structure, is solved by using a broadcasting-based sum-product algorithm and proposing a low-complexity cyclic shift network. The high complexity problem, which is caused by using a large amount of check node processors and variable node processors, is solved by proposing a combined check and variable node processor (CCVP). The proposed QC-LDPC decoder can support the multi-mode decoding by proposing a routing-based interconnection network, the flexible CCVP and the flexible cyclic shift network. The proposed QC-LDPC decoder is operated at 100 MHz clock frequency. The proposed QC-LDPC decoder supports multi-mode decoding and provides 8.1 Gbps throughput for a (1944, 1620) QC-LDPC code.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.

Suggestion of an Fiber Channel-Embedded IPTV STB for Optical Fiber-based IPTV Networks (광섬유 기반 IPTV 네트워크를 위한 FC 내장형 IPTV STB 제안)

  • Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Recently, the Internet Protocol Television (IPTV) services have become very common, enabling various Internet-based services as well as watching TV. In the IPTV system, a Set-Top box (STB) plays a key role as a network terminal device that transmits and receives realtime multimedia contents. In addition, the IPTV networks are usually supported by broadband optical fiber-base network such as fiber-to-the-home (FTTH), However, a general IPTV STB is regarded as one of the local area network (LAN)-attached devices while sharing the bandwidth of the LAN (e.g., Ethernet). In order to overcome the limited bandwidth utilization by fully facilitating the broadband bandwidth (e.g., 1 Gbps) of the optical fiber-based network, we propose a new FC (Fiber Channel)-embedded IPTV STB which can be directly attached to the optical fiber network. Then, we verify that the impacts of the proposed FC-embedded IPTV STB by organizing the the FC-AL (Fiber Channel-Arbitration Loop) network equipped with the FC-embedded IPTV We measures the average Start-up Delay, Average Reject Ratio and the Number of Concurrent Users through extensive simulations to investigate the performances of the suggested FC-AL-based IPTV network. Surprisingly, the IPTV network architecture with the proposed FC-embedded IPTV STBs has an excellent average start-up delay of less than 10 msec, an acceptable average reject ratio of less than 3 % as well as a linear increase of the number of concurrent users when extending the architecture. This reveals that the proposed FC embedded STB has a superior impacts on the performance of the entire IPTV network by effectively utilizing the broadband bandwidth of the fiber optic-based network.