• Title/Summary/Keyword: GARCH

Search Result 315, Processing Time 0.037 seconds

Stationary Bootstrap Prediction Intervals for GARCH(p,q)

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • The stationary bootstrap of Politis and Romano (1994) is adopted to develop prediction intervals of returns and volatilities in a generalized autoregressive heteroskedastic (GARCH)(p, q) model. The stationary bootstrap method is applied to generate bootstrap observations of squared returns and residuals, through an ARMA representation of the GARCH model. The stationary bootstrap estimators of unknown parameters are defined and used to calculate the stationary bootstrap samples of volatilities. Estimates of future values of returns and volatilities in the GARCH process and the bootstrap prediction intervals are constructed based on the stationary bootstrap; in addition, asymptotic validities are also shown.

Bootstrap-Based Test for Volatility Shifts in GARCH against Long-Range Dependence

  • Wang, Yu;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.495-506
    • /
    • 2015
  • Volatility is a variation measure in finance for returns of a financial instrument over time. GARCH models have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986) and it is said that volatility is highly persistent when the sum of the estimated coefficients of the squared lagged returns and the lagged conditional variance terms in GARCH models is close to 1. Regarding persistence, numerous methods have been proposed to test if such persistency is due to volatility shifts in the market or natural fluctuation explained by stationary long-range dependence (LRD). Recently, Lee et al. (2015) proposed a residual-based cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. We propose a bootstrap-based approach for the residual-based test and compare the sizes and powers of our bootstrap-based CUSUM test with the one in Lee et al. (2015) through simulation studies.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk (포트폴리오 VaR 측정을 위한 EVT-GARCH-코퓰러 모형의 성과분석)

  • Lee, Sang Hun;Yeo, Sung Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.753-771
    • /
    • 2016
  • Value at Risk (VaR) is widely used as an important tool for risk management of financial institutions. In this paper we discuss estimation and back testing for VaR of the portfolio composed of KOSPI, Dow Jones, Shanghai, Nikkei indexes. The copula functions are adopted to construct the multivariate distributions of portfolio components from marginal distributions that combine extreme value theory and GARCH models. Volatility models with t distribution of the error terms using Gaussian, t, Clayton and Frank copula functions are shown to be more appropriate than the other models, in particular the model using the Frank copula is shown to be the best.

A Test on the Volatility Feedback Hypothesis in the Emerging Stock Market (신흥주식시장에서의 변동성반응가설 검정)

  • Kim, Byoung-Joon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.191-234
    • /
    • 2009
  • This study examined on the volatility feedback hypothesis through the use of threshold GARCH-in-Mean (GJR-GARCH-M) model developed by Glosten, Jaganathan, and Runkle (1993) in the stock markets of 14 emerging countries during the period of January, 1996 to May, 2009. On this study, I found successful evidences which can support the volatility feedback hypothesis through the following three estimation procedures. First, I found relatively strong positive relationship between the expected market risk premiums and their conditional standard deviations from the GARCH-M model in the basis of daily return on each representative stock market index, which is appropriate to investors' risk-averse preferences. Second, I can also identify the significant asymmetric time-varying volatility originated from the investors' differentiated reactions toward the unexpected market shocks by applying the GJR-GARCH-M model and further find the lasting positive risk aversion coefficient estimators. Third, I derived the negative signs of the regression coefficient of unpredicted volatility on the stock market return by re-applying the GJR-GARCH-M model after I controlled the positive effect of predicted volatility through including the conditional standard deviations from the previous GARCH-M model estimation as an independent explanatory variable in the re-applied new GJR-GARCH-M model. With these consecutive results, the volatility feedback effect was successfully tested to be effective also in the various emerging stock markets, although the leverage hypothesis turned out to be insufficient to be applied to another source of explaining the negative relationship between the unexpected volatility and the ex-post stock market return in the emerging countries in general.

  • PDF

Assessments for MGARCH Models Using Back-Testing: Case Study (사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석)

  • Hwang, S.Y.;Choi, M.S.;Do, J.D.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.261-270
    • /
    • 2009
  • Current financial crisis triggered by shaky U.S. banking system adds to the emphasis on the importance of the volatility in controlling and understanding financial time series data. The ARCH and GARCH models have been useful in analyzing economic time series volatilities. In particular, multivariate GARCH(MGARCH, for short) provides both volatilities and conditional correlations between several time series and these are in turn applied to computations of hedge-ratio and VaR. In this short article, we try to assess various MGARCH models with respect to the back-testing performances in VaR study. To this end, 14 korean stock prices are analyzed and it is found that MGARCH outperforms rolling window, and BEKK and CCC are relatively conservative in back-testing performance.

Empirical Analyses of Asymmetric Conditional Heteroscedasticities for the KOSPI and Korean Won-US Dollar Exchange Rate (KOSPI지수와 원-달러 환율의 변동성의 비대칭성에 대한 실증연구)

  • Maeng, Hye-Young;Shin, Dong-Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1033-1043
    • /
    • 2011
  • In this paper, we use a nested family of models of Generalized Autoregressive Conditional Heteroscedasticity(GARCH) to verify asymmetric conditional heteroscedasticity in the KOSPI and Won-Dollar exchange rate. This study starts from an investigation of whether time series data have asymmetric features not explained by standard GARCH models. First, we use kernel density plot to show the non-normality and asymmetry in data as well as to capture asymmetric conditional heteroscedasticity. Later, we use three representative asymmetric heteroscedastic models, EGARCH(Exponential Garch), GJR-GARCH(Glosten, Jagannathan and Runkle), APARCH(Asymmetric Power Arch) that are improved from standard GARCH models to give a better explanation of asymmetry. Thereby we highlight the fact that volatility tends to respond asymmetrically according to positive and/or negative values of past changes referred to as the leverage effect. Furthermore, it is verified that how the direction of asymmetry is different depending on characteristics of time series data. For the KOSPI and Korean won-US dollar exchange rate, asymmetric heteroscedastic model analysis successfully reveal the leverage effect. We obtained predictive values of conditional volatility and its prediction standard errors by using moving block bootstrap.

News Impacts and the Asymmetry of Oil Price Volatility (뉴스충격과 유가변동성의 비대칭성)

  • Mo, SooWon
    • Environmental and Resource Economics Review
    • /
    • v.13 no.2
    • /
    • pp.175-194
    • /
    • 2004
  • Volumes of research have been implemented to estimate and predict the oil price. These models, however, fail in accurately predicting oil price as a model composed of only a few observable variables is limiting. Unobservable variables and news that have been overlooked in past research, yet have a high likelihood of affecting the oil price. Hence, this paper analyses the news impact on the price. The standard GARCH model fails in capturing some important features of the data. The estimated news impact curve for the GARCH model, which imposes symmetry on the conditional variances, suggests that the conditional variance is underestimated for negative shocks and overestimated for positive shocks. Hence, this paper introduces the asymmetric or leverage volatility models, in which good news and bad news have different impact on volatility. They include the EGARCH, AGARCH, and GJR models. The empirical results showed that negative shocks introduced more volatility than positive shocks. Overall, the AGARCH and GJR were the best at capturing this asymmetric effect. Furthermore, the GJR model successfully revealed the shape of the news impact curve and was a useful approach to modeling conditional heteroscedasticity.

  • PDF

Estimation of VaR Using Extreme Losses, and Back-Testing: Case Study (극단 손실값들을 이용한 VaR의 추정과 사후검정: 사례분석)

  • Seo, Sung-Hyo;Kim, Sung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.219-234
    • /
    • 2010
  • In index investing according to KOSPI, we estimate Value at Risk(VaR) from the extreme losses of the daily returns which are obtained from KOSPI. To this end, we apply Block Maxima(BM) model which is one of the useful models in the extreme value theory. We also estimate the extremal index to consider the dependency in the occurrence of extreme losses. From the back-testing based on the failure rate method, we can see that the model is adaptable for the VaR estimation. We also compare this model with the GARCH model which is commonly used for the VaR estimation. Back-testing says that there is no meaningful difference between the two models if we assume that the conditional returns follow the t-distribution. However, the estimated VaR based on GARCH model is sensitive to the extreme losses occurred near the epoch of estimation, while that on BM model is not. Thus, estimating the VaR based on GARCH model is preferred for the short-term prediction. However, for the long-term prediction, BM model is better.

Estimation of BDI Volatility: Leverage GARCH Models (BDI의 변동성 추정: 레버리지 GARCH 모형을 중심으로)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.3
    • /
    • pp.1-14
    • /
    • 2014
  • This paper aims at measuring how new information is incorporated into volatility estimates. Various GARCH models are compared and estimated with daily BDI(Baltic Dry Index) data. While most researchers agree that volatility is predictable, they differ on how this volatility predictability should be modelled. This study, hence, introduces the asymmetric or leverage volatility models, in which good news and bad news have different predictability for future. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. From the Ljung-Box test statistic for twelfth-order serial correlation for the level we do not find any significant serial correlation in the unpredictable BDI. The coefficients of skewness and kurtosis both indicate that the unpredictable BDI has a distribution which is skewed to the left and significantly flat tailed. Furthermore, the Ljung-Box test statistic for twelfth-order serial correlations in the squares strongly suggests the presence of time-varying volatility. The sign bias test, the negative size bias test, and the positive size bias test strongly indicate that large positive(negative) BDI shocks cause more volatility than small ones. This paper, also, shows that three leverage models have problems in capturing the correct impact of news on volatility and that negative shocks do not cause higher volatility than positive shocks. Specifically, the GARCH model successfully reveals the shape of the news impact curve and is a useful approach to modeling conditional heteroscedasticity of daily BDI.