• 제목/요약/키워드: GADD34

검색결과 7건 처리시간 0.026초

Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

  • Jeon, Yong-Joon;Kim, Jin Hyun;Shin, Jong-Il;Jeong, Mini;Cho, Jaewook;Lee, Kyungho
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.129-135
    • /
    • 2016
  • Eukaryotic translation initiation factor 2 alpha ($eIF2{\alpha}$), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of $eIF2{\alpha}$ phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of $eIF2{\alpha}$ in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of $eIF2{\alpha}$, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of $eIF2{\alpha}$ phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of $eIF2{\alpha}$ by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

Effect of Korean Red Ginseng Extract on Cell Death Responses in Peroxynitrite-Treated Keratinocytes

  • Kim, Hyoung-Do;Ha, Se-Eun;Kang, Jea-Ran;Park, Jong-Kun
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.205-211
    • /
    • 2010
  • Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells treated with $ONOO^-$ (2 mM) prior to incubation with control medium for 12 hours displayed reduced viability, as determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (viability about 48% of that of non-treated control cells). When KRG was added to the post-incubation medium, the negative effects of $ONOO^-$ on cell viability were significantly reduced. Reverse transcription-polymerase chain reaction analysis indicated that KRG alone did not significantly alter p53 or "growth arrest and DNA damage" (GADD)45 mRNA levels. However, the addition of KRG to the post-incubation medium significantly and dose-dependently reduced levels of p53 and GADD45 mRNA in $ONOO^-$-treated cells. Western blot analyses revealed that incubation with KRG decreased p53 and GADD45 protein levels in $ONOO^-$-treated cells, relative to those in cells incubated with control medium. Collectively, these results suggest that Korean red ginseng extract protects cells against $ONOO^-$-induced genotoxicity by increasing cell viability through modulating the expression of p53 signaling intermediates.

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Endoplasmic reticulum stress in periimplantation embryos

  • Michalak, Marek;Gye, Myung Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

인체세포주 A431에서 방사선 조사 후 DNA수선 유전자 발현과 세포고사와의 관계에 관한 연구 (Relationship between Radiation Induced Activation of DNA Repair Genes and Radiation Induced Apoptosis in Human Cell Line A431)

  • 범희승;민정준;최근희;김경근
    • 대한핵의학회지
    • /
    • 제34권2호
    • /
    • pp.144-153
    • /
    • 2000
  • 목적: 피부세포인 A431세포주에서 방사선 조사에 의한 세포고사가 방사선량과 방사선 조사 후 경과시간에 따라서 어떻게 변하는지를 밝혀보고, 방사선에 의해 유도된 수선유전자의 발현을 방사선량별, 조사 후 경과시간별로 분석하여 세포고사와 어떤 관계가 있는지 알아보고자 하였다. 대상 및 방법: 한국 세포주은행으로부터 분양받은 피부상피암 세포의 일종인 A431을 Cs-137 세포조사기를 이용하여 5 Gy, 25 Gy씩 조사하고 4, 12, 48시간이 지난 다음 세포를 모아 유세포계측법을 이용하여 고사세포를 계수하였다. 또한 이 세포들을 Northern blot analysis, Western blot analysis를 시행하여 방사선량별, 경과시간별로 유전자의 변화를 분석하였다. 각 실험군간의 통계적 유의성은 SPSS 통계프로그램을 사용하여 MANOVA test에 의해 검정하였으며, p값 0.05 미만을 유의한 수준으로 판정하였다. 결과: 유세포 계측기로 측정한 고사세포의 비율은 방사선 조사 후 12시간째에 가장 유의하게 증가하였다 (p<0.01). DNA수선유전자의 발현은 5 Gy 조사 후 p53, p21, hRAD 유전자가 12시간째에 증가하였고, 25 Gy 조사 후에는 hRAD50과 p21이 12시간에 증가하였으며, p53과 GADD45는 12시간까지 별 변화가 없었으나 이후 증가하여 48시간에 가장 높은 발현을 보였다. 결론: 피부상피암세포에서 방사선에 의해 유도되는 세포고사는 방사선 조사 후 12시간에 가장 현저해지는 것을 알 수 있었으며, 이 세포고사에 DNA수선 유전자가 밀접한 관련이 있을 것으로 보이는데, 특히 최근에 발견된 hRAD50 유전자도 세포고사와 밀접한 관련이 있을 것으로 사료되었다.

  • PDF

1,2,3-Trichloropropane으로 유도된 SD랫드의 간독성에서 ER 스트레스 반응의 조절 (Regulation of ER Stress Response on 1,2,3-Trichloropropane-Induced Hepatotoxicity of Sprague Dawley Rats)

  • 김태렬;진유정;김지은;송희진;노유정;설아윤;박은서;박기호;임수정;왕수하;임용;황대연
    • 생명과학회지
    • /
    • 제34권2호
    • /
    • pp.113-121
    • /
    • 2024
  • ER (Endoplasmic reticulume) 스트레스반응은 difenoconazole 등과 같은 다양한 독성물질에 의한 독성반응 동안에 유도되지만, 농업 및 산업에서 전반적으로 사용되는 화학물질로 간독성(Hepatotoxicity)을 유도하는 1,2,3-Trichloropropane (TCP)와의 연관성은 연구된 바 없다. 따라서, 본 연구에서는 TCP처리로 유발된 간독성(Hepatotoxicity) 유발과정 동안에 ER스트레스의 유발기전에 대해 연구하기 위하여, TCP로 처리된 SD(Sprague Dawley)랫드에서 간독성, apoptosis 그리고 ER스트레스에 대한 지표들의 변화를 분석하였다. 그 결과, TCP 처리그룹은 Vehicle 처리그룹에 비하여 체중과 식이 섭취량이 감소하였고, 간 조직에서 괴사(Necrosis)와 공포화(Vaculation) 등이 유의적으로 증가하였다. 또한, apoptosis 관련 인자인 Bax/Bcl-2와 Cleaved Caspase-3(Cas-3)/Cas-3의 발현은 Vehicle 처리그룹보다 TCP 처리그룹에서 유의적으로 증가하였다. ER스트레스 반응지표 분석에서, C/EBP homologous protein (CHOP), p-eukaryotic translation initiation factor 2 alpha subunit (eIF2α), p-iniositor-requiring enzyme 1α (IRE1α)의 발현은 TCP100 처리그룹에서만 증가하였다. 하지만 Growth arrest and DNA damage-34 (GADD34)와 X-box binding protein-1 (XBP1)의 전사는 TCP200 처리그룹에서 유의적으로 변화되었다. 따라서, 이러한 결과는 ER스트레스반응은 TCP 처리에 의해 유도된 간독성과정 동안에 unfolded protein response (UPR) pathway의 조절을 통해 성공적으로 유도됨을 제시하고 있다.

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권6호
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.