Browse > Article
http://dx.doi.org/10.5142/jgr.2010.34.3.205

Effect of Korean Red Ginseng Extract on Cell Death Responses in Peroxynitrite-Treated Keratinocytes  

Kim, Hyoung-Do (Division of Biological Science, Wonkwang University)
Ha, Se-Eun (Division of Biological Science, Wonkwang University)
Kang, Jea-Ran (Division of Biological Science, Wonkwang University)
Park, Jong-Kun (Division of Biological Science, Wonkwang University)
Publication Information
Journal of Ginseng Research / v.34, no.3, 2010 , pp. 205-211 More about this Journal
Abstract
Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells treated with $ONOO^-$ (2 mM) prior to incubation with control medium for 12 hours displayed reduced viability, as determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (viability about 48% of that of non-treated control cells). When KRG was added to the post-incubation medium, the negative effects of $ONOO^-$ on cell viability were significantly reduced. Reverse transcription-polymerase chain reaction analysis indicated that KRG alone did not significantly alter p53 or "growth arrest and DNA damage" (GADD)45 mRNA levels. However, the addition of KRG to the post-incubation medium significantly and dose-dependently reduced levels of p53 and GADD45 mRNA in $ONOO^-$-treated cells. Western blot analyses revealed that incubation with KRG decreased p53 and GADD45 protein levels in $ONOO^-$-treated cells, relative to those in cells incubated with control medium. Collectively, these results suggest that Korean red ginseng extract protects cells against $ONOO^-$-induced genotoxicity by increasing cell viability through modulating the expression of p53 signaling intermediates.
Keywords
Korea red ginseng extract; Peroxynitrous acid; Apoptosis; p53; HaCaT cell;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997;133:135-140.   DOI   ScienceOn
2 Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int 2005;25:1069-1073.   DOI   ScienceOn
3 Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res 2007;1136:190-199.   DOI   ScienceOn
4 Apone F, Tito A, Carola A, Arciello S, Tortora A, Filippini L, Monoli I, Cucchiara M, Gibertoni S, Chrispeels MJ, et al. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J Biotechnol 2010;145:367-376.   DOI   ScienceOn
5 Talbourdet S, Sadick NS, Lazou K, Bonnet-Duquennoy M, Kurfurst R, Neveu M, Heusele C, Andre P, Schnebert S, Draelos ZD, et al. Modulation of gene expression as a new skin anti-aging strategy. J Drugs Dermatol 2007;6(6 Suppl):s25-s33.
6 Ha SE, Shin DH, Kim HD, Shim SM, Kim HS, Kim BH, Lee JS, Park JK. Effects of ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses in HaCaT cells. Naunyn Schmiedebergs Arch Pharmacol 2010;382:89-101.   DOI
7 Sarma SN, Kim YJ, Ryu JC. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology 2010;271:122-130.   DOI   ScienceOn
8 Ma XL, Lopez BL, Liu GL, Christopher TA, Ischiropoulos H. Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. Cardiovasc Res 1997;36:195-204.   DOI   ScienceOn
9 Salem MM, Shalbaf M, Gibbons NC, Chavan B, Thornton JM, Schallreuter KU. Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 2009;23:3790-3807.   DOI   ScienceOn
10 Tsai YS, Lee KW, Huang JL, Liu YS, Juo SH, Kuo WR, Chang JG, Lin CS, Jong YJ. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells. Toxicology 2008;249:230-237.   DOI   ScienceOn
11 Kim EH, Rhee DK. Anti-oxidative properties of ginseng. J Ginseng Res 2009;33:1-7.   DOI   ScienceOn
12 Saiki I. In vivo anti-metastatic action of ginseng saponins is based on their intestinal bacterial metabolites after oral administration. J Ginseng Res 2007;31:1-13.   DOI   ScienceOn
13 Liang Y, Lin SY, Brunicardi FC, Goss J, Li K. DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 2009;33:661-666.   DOI
14 Lim W, Mudge KW, Vermeylen F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 2005;53:8498-8505.   DOI   ScienceOn
15 Shin YW, Bae EA, Kim SS, Lee YC, Kim DH. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immunopharmacol 2005;5:1183-1191.   DOI   ScienceOn
16 Cho JY. Inhibitory effect of ginsenoside Rg3 and its derivative ginsenoside Rg3-2H on NO production and lymphocyte proliferation. J Ginseng Res 2008;32:264-269.   DOI   ScienceOn
17 Jeong SJ, Han SH, Kim DY, Lee JC, Kim HS, Kim BH, Lee JS, Hwang EH, Park JK. Effects of mRg2, a mixture of ginsenosides containing 60% Rg2, on the ultraviolet B-induced DNA repair synthesis and apoptosis in NIH3T3 cells. Int J Toxicol 2007;26:151-158.   DOI   ScienceOn
18 Powley IR, Kondrashov A, Young LA, Dobbyn HC, Hill K, Cannell IG, Stoneley M, Kong YW, Cotes JA, Smith GC, et al. Translational reprogramming following UVB irradiation is mediated by DNA-PKcs and allows selective recruitment to the polysomes of mRNAs encoding DNA repair enzymes. Genes Dev 2009;23:1207-1220.   DOI   ScienceOn
19 Jia Z, Zhu H, Vitto MJ, Misra BR, Li Y, Misra HP. Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid. Mol Cell Biochem 2009;323:131-138.   DOI
20 Cho SW, Cho EH, Choi SY. Ginsenosides activate DNA polymerase delta from bovine placenta. Life Sci 1995;57:1359-1365.   DOI   ScienceOn
21 Dregoesc D, Rainbow AJ. Differential effects of hypoxia and acidosis on p53 expression, repair of UVC-damaged DNA and viability after UVC in normal and tumor-derived human cells. DNA Repair (Amst) 2009;8:370-382.   DOI   ScienceOn
22 Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1:3-11.   DOI   ScienceOn
23 Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424-C1437.   DOI
24 Kang KS, Yamabe N, Kim HY, Okamoto T, Sei Y, Yokozawa T. Increase in the free radical scavenging activities of American ginseng by heat processing and its safety evaluation. J Ethnopharmacol 2007;113:225-232.   DOI   ScienceOn
25 Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992;71:587-597.   DOI   ScienceOn
26 Huie RE, Padmaja S. The reaction rate of nitric oxide with superoxide. Free Radic Res Commun 1993;18:195-199.   DOI
27 Selivanova G. Therapeutic targeting of p53 by small molecules. Semin cancer Biol 2010;20:46-56.   DOI   ScienceOn
28 Chen AF, Davies CM, De Lin M, Fermor B. Oxidative DNA damage in osteoarthritic porcine articular cartilage. J Cell Physiol 2008;217:828-833.   DOI   ScienceOn
29 Fontana M, Giovannitti F, Pecci L. The protective effect of hypotaurine and cysteine sulphinic acid on peroxynitrite-mediated oxidative reactions. Free Radic Res 2008;42:320-330.   DOI   ScienceOn
30 Guidarelli A, Cerioni L, Fiorani M, Cantoni O. Differentiation-associated loss of ryanodine receptors: a strategy adopted by monocytes/macrophages to prevent the DNA single-strand breakage induced by peroxynitrite. J Immunol 2009;183:4449-4457.   DOI   ScienceOn
31 Nam KY, Ko SR, Choi KJ. Relationship of saponin and non-saponin for the quality of ginseng. J Ginseng Res 1998;22:274-283.
32 Estevez AG, Radi R, Barbeito L, Shin JT, Thompson JA, Beckman JS. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem 1995;65:1543-1550.   DOI
33 Lee EH, Cho SY, Kim SJ, Shin ES, Chang HK, Kim DH, Yeom MH, Woe KS, Lee J, Sim YC, et al. Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2. J Invest Dermatol 2003;121:607-613.   DOI   ScienceOn
34 Rahman NA, Mori K, Mizukami M, Suzuki T, Takahashi N, Ohyama C. Role of peroxynitrite and recombinant human manganese superoxide dismutase in reducing ischemia-reperfusion renal tissue injury. Transplant Proc 2009;41:3603-3610.   DOI   ScienceOn