DOI QR코드

DOI QR Code

Endoplasmic reticulum stress in periimplantation embryos

  • Michalak, Marek (Department of Biochemistry, University of Alberta) ;
  • Gye, Myung Chan (Department of Life Science and Institute of Natural Sciences, College of Natural Sciences, Hanyang University)
  • Received : 2014.12.03
  • Accepted : 2014.12.24
  • Published : 2015.03.31

Abstract

Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

Keywords

References

  1. Groenendyk J, Agellon LB, Michalak M. Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol 2013;75:49-67. https://doi.org/10.1146/annurev-physiol-030212-183707
  2. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 2013;301:215-90. https://doi.org/10.1016/B978-0-12-407704-1.00005-1
  3. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013;5:a013227.
  4. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012;13:89-102. https://doi.org/10.1038/nrm3270
  5. Merulla J, Fasana E, Solda T, Molinari M. Specificity and regulation of the endoplasmic reticulum-associated degradation machinery. Traffic 2013;14:767-77. https://doi.org/10.1111/tra.12068
  6. Ron D, Hubbard SR. How IRE1 reacts to ER stress. Cell 2008;132:24-6. https://doi.org/10.1016/j.cell.2007.12.017
  7. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012;13:549-65. https://doi.org/10.1038/nrm3414
  8. Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013;228:1802-18. https://doi.org/10.1002/jcp.24360
  9. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012;81:767-93. https://doi.org/10.1146/annurev-biochem-072909-095555
  10. Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012;302:L721-9. https://doi.org/10.1152/ajplung.00410.2011
  11. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000;2:326-32. https://doi.org/10.1038/35014014
  12. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001;7:1165-76. https://doi.org/10.1016/S1097-2765(01)00265-9
  13. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002;3:99-111. https://doi.org/10.1016/S1534-5807(02)00203-4
  14. Hong M, Li M, Mao C, Lee AS. Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. J Cell Biochem 2004;92:723-32. https://doi.org/10.1002/jcb.20118
  15. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569:29-63. https://doi.org/10.1016/j.mrfmmm.2004.06.056
  16. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107:881-91. https://doi.org/10.1016/S0092-8674(01)00611-0
  17. Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007;87:1377-408. https://doi.org/10.1152/physrev.00050.2006
  18. Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 2007;32:469-76. https://doi.org/10.1016/j.tibs.2007.09.003
  19. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochim Biophys Acta 2013;1833:3507-17. https://doi.org/10.1016/j.bbamcr.2013.07.024
  20. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court FA, et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J 2011; 30:4465-78. https://doi.org/10.1038/emboj.2011.318
  21. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009;138:562-75. https://doi.org/10.1016/j.cell.2009.07.017
  22. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006;26:9220-31. https://doi.org/10.1128/MCB.01453-06
  23. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000;287:664-6. https://doi.org/10.1126/science.287.5453.664
  24. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013;12:703-19. https://doi.org/10.1038/nrd3976
  25. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014;15:233-49. https://doi.org/10.1038/nrn3689
  26. Manie SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol 2014;307:C901-7. https://doi.org/10.1152/ajpcell.00292.2014
  27. Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 2012;63:317-28. https://doi.org/10.1146/annurev-med-043010-144749
  28. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014;14:581-97. https://doi.org/10.1038/nrc3800
  29. Zwicker BL, Agellon LB. Transport and biological activities of bile acids. Int J Biochem Cell Biol 2013;45:1389-98. https://doi.org/10.1016/j.biocel.2013.04.012
  30. Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, et al. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 2007;42:1818-25. https://doi.org/10.1016/j.freeradbiomed.2007.03.007
  31. Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 2010;12 Suppl 2:108-15. https://doi.org/10.1111/j.1463-1326.2010.01282.x
  32. Rappolee DA, Sturm KS, Schultz GA, Perdesen RA, Werb Z. The expression of growth factor ligand and receptors in preimplantation embryos. In: Ucla Colloquium on Early Embryo Development; Paracrine R, Heyner S, Wiley LM, editors. Early embryo development and paracrine relationships: proceedings of a UCLA Symposia Colloquium, held at Taos, New Mexico, February 3-8, 1989. New York: Wiley-Liss; 1990. p.11-25.
  33. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci U S A 1990;87:4756-60. https://doi.org/10.1073/pnas.87.12.4756
  34. O'Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod 1997;56:229-37. https://doi.org/10.1095/biolreprod56.1.229
  35. Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J Endocrinol 2011;210:5-14. https://doi.org/10.1530/JOE-10-0461
  36. Abraham T, Pin CL, Watson AJ. Embryo collection induces transient activation of XBP1 arm of the ER stress response while embryo vitrification does not. Mol Hum Reprod 2012;18:229-42. https://doi.org/10.1093/molehr/gar076
  37. Hao L, Vassena R, Wu G, Han Z, Cheng Y, Latham KE, et al. The unfolded protein response contributes to preimplantation mouse embryo death in the DDK syndrome. Biol Reprod 2009;80:944-53. https://doi.org/10.1095/biolreprod.108.072546
  38. Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev 2005;17:371-8. https://doi.org/10.1071/RD04102
  39. Zhang JY, Diao YF, Oqani RK, Han RX, Jin DI. Effect of endoplasmic reticulum stress on porcine oocyte maturation and parthenogenetic embryonic development in vitro. Biol Reprod 2012;86:128. https://doi.org/10.1095/biolreprod.111.095059
  40. Wu LL, Russell DL, Norman RJ, Robker RL. Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development. Mol Endocrinol 2012;26:562-73. https://doi.org/10.1210/me.2011-1362
  41. Bar-Joseph H, Ben-Aharon I, Rizel S, Stemmer SM, Tzabari M, Shalgi R. Doxorubicin-induced apoptosis in germinal vesicle (GV) oocytes. Reprod Toxicol 2010;30:566-72. https://doi.org/10.1016/j.reprotox.2010.07.003
  42. Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006;26:5688-97. https://doi.org/10.1128/MCB.00779-06
  43. Na WH, Kang HS, Eo JW, Gye MC, Kim MK. Expression and localization of ATF4 gene on oxidative stress in preimplantation mouse embryo. Dev Reprod 2006;10:105-13.
  44. Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, Ron D. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 2009;106:1832-7. https://doi.org/10.1073/pnas.0809632106
  45. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev 2000;14:152-7.
  46. Zhao H, Cao Y, Grunz H. Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway. Dev Biol 2003;257:278-91. https://doi.org/10.1016/S0012-1606(03)00069-1
  47. Iwawaki T, Akai R, Kohno K, Miura M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med 2004;10:98-102. https://doi.org/10.1038/nm970
  48. Cao Y, Knochel S, Oswald F, Donow C, Zhao H, Knochel W. XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos. Mech Dev 2006;123:84-96. https://doi.org/10.1016/j.mod.2005.09.003
  49. Souid S, Lepesant JA, Yanicostas C. The xbp-1 gene is essential for development in Drosophila. Dev Genes Evol 2007;217:159-67. https://doi.org/10.1007/s00427-006-0124-1
  50. Zhang JY, Diao YF, Kim HR, Jin DI. Inhibition of endoplasmic reticulum stress improves mouse embryo development. PLoS One 2012;7:e40433. https://doi.org/10.1371/journal.pone.0040433
  51. Maekawa M, Yamamoto T, Tanoue T, Yuasa Y, Chisaka O, Nishida E. Requirement of the MAP kinase signaling pathways for mouse preimplantation development. Development 2005;132:1773-83. https://doi.org/10.1242/dev.01729
  52. Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, Wang F, Rappolee DA. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril 2005;83 Suppl 1:1144-54. https://doi.org/10.1016/j.fertnstert.2004.08.038
  53. Song BS, Yoon SB, Kim JS, Sim BW, Kim YH, Cha JJ, et al. Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol Reprod 2012;87:8, 1-11. https://doi.org/10.1095/biolreprod.112.102293
  54. Gupta MK, Uhm SJ, Han DW, Lee HT. Embryo quality and production efficiency of porcine parthenotes is improved by phytohemagglutinin. Mol Reprod Dev 2007;74:435-44. https://doi.org/10.1002/mrd.20547
  55. Kim JS, Song BS, Lee KS, Kim DH, Kim SU, Choo YK, et al. Tauroursodeoxycholic acid enhances the pre-implantation embryo development by reducing apoptosis in pigs. Reprod Domest Anim 2012;47:791-8. https://doi.org/10.1111/j.1439-0531.2011.01969.x
  56. Lian IA, Loset M, Mundal SB, Fenstad MH, Johnson MP, Eide IP, et al. Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia. Placenta 2011;32:823-9. https://doi.org/10.1016/j.placenta.2011.08.005
  57. Liu AX, He WH, Yin LJ, Lv PP, Zhang Y, Sheng JZ, et al. Sustained endoplasmic reticulum stress as a cofactor of oxidative stress in decidual cells from patients with early pregnancy loss. J Clin Endocrinol Metab 2011;96:E493-7. https://doi.org/10.1210/jc.2010-2192
  58. Gao HJ, Zhu YM, He WH, Liu AX, Dong MY, Jin M, et al. Endoplasmic reticulum stress induced by oxidative stress in decidual cells: a possible mechanism of early pregnancy loss. Mol Biol Rep 2012;39:9179-86. https://doi.org/10.1007/s11033-012-1790-x
  59. Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS, et al. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 2008;173:451-62. https://doi.org/10.2353/ajpath.2008.071193
  60. Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009;30 Suppl A:S43-8. https://doi.org/10.1016/j.placenta.2008.11.003
  61. Iwawaki T, Akai R, Yamanaka S, Kohno K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci U S A 2009;106:16657-62. https://doi.org/10.1073/pnas.0903775106
  62. Wang Z, Wang H, Xu ZM, Ji YL, Chen YH, Zhang ZH, et al. Cadmium-induced teratogenicity: association with ROS-mediated endoplasmic reticulum stress in placenta. Toxicol Appl Pharmacol 2012;259:236-47. https://doi.org/10.1016/j.taap.2012.01.001

Cited by

  1. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity vol.5, pp.4, 2015, https://doi.org/10.3390/biom5042538
  2. New insights into the unfolded protein response in stem cells vol.7, pp.33, 2016, https://doi.org/10.18632/oncotarget.9833
  3. CLDN6-induced apoptosis via regulating ASK1-p38/JNK signaling in breast cancer MCF-7 cells vol.48, pp.6, 2015, https://doi.org/10.3892/ijo.2016.3469
  4. Effects of embryo-derived exosomes on the development of bovine cloned embryos vol.12, pp.3, 2015, https://doi.org/10.1371/journal.pone.0174535
  5. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040792
  6. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows vol.12, pp.5, 2015, https://doi.org/10.1371/journal.pone.0178551
  7. Relief of endoplasmic reticulum stress enhances DNA damage repair and improves development of pre-implantation embryos vol.12, pp.11, 2015, https://doi.org/10.1371/journal.pone.0187717
  8. Vitamin D Ameliorates Impaired Wound Healing in Streptozotocin-Induced Diabetic Mice by Suppressing Endoplasmic Reticulum Stress vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/1757925
  9. Fibroblast growth factor 2 induces proliferation and distribution of G2/M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effect vol.233, pp.4, 2015, https://doi.org/10.1002/jcp.26173
  10. Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes vol.13, pp.6, 2015, https://doi.org/10.1371/journal.pone.0198742
  11. An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo vol.9, pp.None, 2015, https://doi.org/10.1038/s41598-019-49817-3
  12. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development vol.20, pp.2, 2015, https://doi.org/10.3390/ijms20020409
  13. The fine-tuning of endoplasmic reticulum stress response and autophagy activation during trophoblast syncytialization vol.10, pp.9, 2015, https://doi.org/10.1038/s41419-019-1905-6
  14. Genomic Function of Estrogen Receptor β in Endometriosis vol.160, pp.11, 2015, https://doi.org/10.1210/en.2019-00442
  15. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6106-2
  16. Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development vol.87, pp.1, 2015, https://doi.org/10.1002/mrd.23305
  17. Effects of salubrinal on ER stress in an experimental model of polycystic ovary syndrome vol.44, pp.4, 2015, https://doi.org/10.1080/01913123.2020.1850963
  18. Impact of endoplasmic reticulum stress on oocyte aging mechanisms vol.26, pp.8, 2020, https://doi.org/10.1093/molehr/gaaa040
  19. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos vol.11, pp.1, 2015, https://doi.org/10.3390/ani11010221
  20. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism vol.22, pp.13, 2015, https://doi.org/10.3390/ijms22136986