• Title/Summary/Keyword: G3//B3LYP calculation

Search Result 44, Processing Time 0.02 seconds

DFT Conformational Study of Calix[6]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.837-845
    • /
    • 2009
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2). The structures of various conformers of 1 were optimized by using the B3LYP/6-31G(d,p) and /6-31+G(d,p) methods followed by single point calculation of MPW1PW91/ 6-31G(d,p). The relative stability of the conformers of 1 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) $\sim$ 1,2-alternate $\sim$ 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of different conformers of 2 were optimized by using the B3LYP/6-31G(d,p) method followed by single point calculation of MPW1PW91/6-31G(d,p). The relative stability of the conformers of 2 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate $\sim$ partial-cone > 1,2,3-alternate > 1,3,5alternate > 1,3-alternate. One of the important factors affecting the relative stabilities of the various conformers of the 1 and 2 is the number and strength of the intramolecular hydrogen bonds.

Synthesis, Crystal Structure, Spectra Characterization and DFT Studies on a Di-Cycle Pyrazoline Derivative

  • Song, Jie;Zhao, Pu Su;Zhang, Wei Guang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1875-1880
    • /
    • 2010
  • A dicycle pyrazoline derivative, 1-phenyl-5-(p-fluorophenyl)-3,4-($\alpha$-p-fluoro-tolylenecyclohexano) pyrazoline, was synthesized and characterized by elemental analysis, IR, UV-vis, fluorescence spectra and X-ray single crystal diffraction. Density function theory (DFT) calculations were performed by using B3LYP method with 6-$311G^{**}$ basis set. The optimized geometry can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, which suggest that B3LYP/6-$311G^{**}$ method can well predict the IR spectra. Both the experimental electronic absorption spectra and the predicted ones by B3LYP/6-$311G^{**}$ method reveal three electron-transition bands, with the theoretical ones having some red shifts compared with the experimental data. Natural bond orbital analyses indicate that the absorption bands are mainly derived from the contribution of n $\rightarrow\pi^*$ and $\pi\rightarrow\pi^*$ transitions. Fluorescence spectra determination shows that the title compound can emit blue-light at about 478 nm. On the basis of vibrational analysis, the thermodynamic properties of title compound at different temperature have been calculated, revealing the correlations between $C^0_{p,m}$, $S^0_m$, $H^0_m$ and temperature.

Does the Gaseous Aniline Cation Isomerize to Methylpyridine Cations Before Dissociation?

  • Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3249-3252
    • /
    • 2013
  • We have explored the potential energy surface for the isomerization of the aniline (AN) radical cation to the 2-, 3-, and 4-methylpyridine (picoline, MP) radical cations using G3 model calculations. The isomerization may occur through the 1H-azepine (7-aza-cycloheptatriene) radical cation. A quantitative kinetic analysis has been performed using the Rice-Ramsperger-Kassel-Marcus theory, based on the potential energy surface. The result shows that isomerization between $AN^{+\bullet}$ and each $MP^{+\bullet}$ hardly occurs before their dissociations.

DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1893-1897
    • /
    • 2008
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the p-tert-butylcalix[5]arene (1) and p-tert-butylcalix[4]arene (2). The structures of different conformers of 1 were optimized by using B3LYP/6-31+G(d,p) method. The relative stability of the various conformers of 1 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of four conformers of 2 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1 and 2 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on different calculation methods.

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang;Zhang, Ke-Jie;Zhao, Pu-Su;Zheng, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1048-1052
    • /
    • 2006
  • Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.

mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond (캘릭스[n]아렌(n = 4,5,6)의 이형체들의 상대적인 안정성과 수소결합에 대한 양자역학적 계산연구)

  • Kim, Kwang-Ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.640-652
    • /
    • 2009
  • We have performed mPW1PW91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene (1), p-tert-butylcalix[5]arene (2), calix[6]arene (3) and p-tertbutylcalix[6]arene (4). The structures of the different conformers of 1-3 were optimized by using mPW1PW91/6-31+G(d,p) method. The relative stability of the four conformers of 1 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The relative stability of the conformers of 2 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of the various conformers of 3 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) - 1,2-alternate - 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of the various conformers of 4 were optimized by using the mPW1PW91/6-31G(d,p) method followed by single point calculation of mPW1PW91/6-31+G(d,p). The relative stability of the conformers of 4 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate - partial-cone > 1,2,3-alternate > 1,3,5-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1-4 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on two different calculation methods (B3LYP and mPW1PW91).

A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals (다고리 방향족 탄화수소의 반응 경로에 대한 DFT 연구 I: 2개의 OH 라디칼에 의한 페난트렌의 분해 반응)

  • Lee, Min-Joo;Lee, Byung-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • In this study, the DFT calculation was performed using the B3LYP/6-31G(d,p) basis sets for the reaction process in which phenanthrene decomposes due to the chain reaction of two OH radicals on phenanthrene in the gaseous state of 298 K at 1 atm. As a result of the calculation, even when two OH radicals act on phenanthrene in a chain, the reaction for producing phenanthren-9-ol is predicted to be more advantageous than the reaction for producing phenanthren-1-ol. On the other hand, it was predicted that the OH addition process at room temperature would be advantageous for the priority of the OH addition and H abstraction process.

mPW1PW91 Calculated Relative Stabilities and Structures for the Conformers of 1,3-dimethoxy-p-tert-butylthiacalix[4]crown-5-ether (1,3-디메톡시-티아캘릭스[4]크라운-5-에테르의 이형체들의 상대적인 안정성과 구조들에 대한 mPW1PW91 계산 연구)

  • Kim, Kwang-ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.521-529
    • /
    • 2009
  • Molecular structures of the various conformers for the 1,3-dimethoxy-p-tert-butylthiacalix[4] crown-5-ether (3) were optimized by using DFT B3LYP/6 - 31 + G(d,p) and mPW1PW91/6 - 31 + G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the energy differences and structures of eight in/out orientations (cone_oo, cone_oi, pc_oo, pc_io, pc_oi, pc_ii, 13a_oo, 13a_io) of two methoxy groups in three major conformations (cone, partial-cone and 1,3-alternate). The 13a_oo (out-out orientation of the 1,3-alternate conformer) is calculated to be the most stable among eight different conformations of 3, and in accord with the experimental result. The ordering of relative stability resulted from the mPW1PW91/6 - 31 + G(d,p) calculation method is following: 13a_oo > 13a_io$\sim$pc_io$\sim$cone_oo > cone_oi$\sim$pc_oo$\sim$pc_oi > pc_ii.

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.