DOI QR코드

DOI QR Code

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation

양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석

  • Sim, Jae-Ho (Department of Advanced Material and Chemical Engineering, Halla University)
  • 심재호 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2018.04.24
  • Accepted : 2018.07.06
  • Published : 2018.07.31

Abstract

The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.

이성질체의 형태는 수용액 상태에서 종종 안정성과 반응성 등의 기본상태 뿐만 아니라 사슬성장 및 접힘 과정으로 인하여 형태형성에 영향을 주기 때문에 올리고펩티드의 형태를 이해하는 것이 중요하다. 본 논문에서는 L-알라닌(LA), 글리신(G) 5량체 모델의 무수 및 수화물(수화율; h/1) 상태의 구조와 에너지를 4가지 형태이성질체 (베타-확장형;= t-/t+, $PP_{II}$형; g-/t+, $PP_{II}$-유사형; g-/g+ 및 알파-나선형; g-/g-)에 대하여 B3LYP/6-31G(d,p)를 이용하여 양자화학계산(QCC) 방법으로 분석하였다. 구조최적화는 밀도함수 이론(DFT)으로써 B3LYP를 사용하였으며, 기본설정(Basic set)으로는 6-31G(d,p)를 이용하였다. 이미노 양성자(NH)를 갖는 LA와 G에서 베타-확장형, $PP_{II}$-유사형, 알파-나선형의 3가지 형태가 얻어졌으며, 대부분 물 분자가 $PP_{II}$-유사형과 알파-나선형에서는 CO-HN 분자 내 수소결합 사이에 주로 삽입되었고, 베타-확장형은 CO기에 부착되었다. 또한, LA와 G에서 $PP_{II}$-유사형 형태이성질체가 무수 및 수화물 상태에서 가장 안정적이었으며, $PP_{II}$ 형태이성질체는 얻어지지 않았다. LA에 대한 결과는 알라닌 올리고펩티드의 안정적인 형태가 주로 $PP_{II}$라고 보고한 다른 연구의 실험적 및 이론적인 결과와는 상이했다. 올리고펩티드 형태이성질체의 생성패턴과 안정성이 CO-HN의 분자 내 수소결합의 존재 여부 또는 출발 아미노산 내 $NH_2$기의 존재 여부에 강한 영향을 받는 것을 알 수 있었다.

Keywords

References

  1. Z. Shi, C. A. Oison, G. D. Rose, R. L. Baldwin, & N. R. Kallenbach, "Polyproline II structure in a sequence of seven alanine residues", PNAS, 99, 9190-9195, 2002. https://doi.org/10.1073/pnas.112193999
  2. F. Eker, X. Cao, L. Nafie & R. Schweitzer-Stenner, "Tripeptides Adopt Stable Structures in Water. A Combined Polarized Visible Raman, FTIR, and VCD Spectroscopy Study". J. Am. Chem. Soc., 124, 14330- 14341, 2002. https://doi.org/10.1021/ja027381w
  3. F. Eker, X. K. Griebenow & R. Schweitzer-Stenner, "Stable Conformation of Tripeptides in Aqueous Solution Studied by UV Circular Dichroism Spectroscopy". J. Am. Chem. Soc., 125, 8178-8185, 2003. https://doi.org/10.1021/ja034625j
  4. J. Graf, P. H. Nguyen, G. Stock & H. Schwalbe, "Structure and Dynamics of the Homologous Series of Alanine Peptides: A Joint Molecular Dynamics/NMR Study". J. Am. Chem. Soc., 129, 1179-1189, 2007. https://doi.org/10.1021/ja0660406
  5. A. Kentsis, M. Mezei, T. Gindin & R. Osman, "Unfolded State of Polyalanine is a segmented Polyprorine II Helix". PROTEINS: Structure, Function, and Bioinformatics, 55, 493-501, 2004. https://doi.org/10.1002/prot.20051
  6. J-H. Sim, "Quantum Chemical Calculation on the Conformational Structure of the Alanine Oligomer Model". J. Korea Academia-Industrial cooperation Soc., 16(2), 1563-1570, 2015. https://doi.org/10.5762/KAIS.2015.16.2.1563
  7. M. Kobayashi, J. H. SIM & H. Sato, "Conformational analyses for alanine oligomer during hydration by quantum chemical calculation (QCC)". Polym. Bull., 74, 657-670, 2017. https://doi.org/10.1007/s00289-016-1736-x
  8. J. Rigaudy & S. P. Klesney, Nomenclature of Organic Chemistry, Section E, 483, Pergamon Press, Oxford, 1979.
  9. http://gaussian.com/citation/
  10. V. Barone & M. Cossi, "Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model". J. Phys. Chem., A, 102(11), 1995-2001, 1998. https://doi.org/10.1021/jp9716997
  11. M. Cossi, N. Rega, G. Scalmani & V. Barone, "Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model". J. Comp. Chem., 24(6), 669-681, 2003. https://doi.org/10.1002/jcc.10189
  12. M. Kinoshita, Y. Okamoto & F. Hirata, "Solvent Effects on Formation of Tertiary Structure of Protein". Seibutsu-butsuri, Biophysical Society of Japan, 40, 374-378, 2000. https://doi.org/10.2142/biophys.40.374
  13. J. Ireta, "Microsolvation Effects on the Stability of Polyalanine in Extended and Polyproline II Conformation". International Jounal of Quantum Chemistry, 112, 3612-3617, 2012. https://doi.org/10.1002/qua.24246
  14. P. I. Nagy, "Review, Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution". Int. J. Mol. Sci., 15(11), 19562-19633, 2014. https://doi.org/10.3390/ijms151119562
  15. M. Kobayashi & H. Sato, "Conformational analysis of ethylene oxide and ethylene imine oligomers by quantum chemical calculations: solvent effects". Polymer Bull., 61, 529-540, 2008. https://doi.org/10.1007/s00289-008-0969-8
  16. S. Miertus, J. Tomasi., "Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes". Chem. Phys., 65(2), 239-245, 1982. https://doi.org/10.1016/0301-0104(82)85072-6
  17. Mu, Y., Kosov, D. S. & Stock, G. Conformational Dynamics of Trialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS Force Fields to NMR and Infrared Experiments. J. Phys. Chem. B107, 5064-5073, 2003.
  18. Marqusee, S., Robbins, V. H. & Baldwin, R. L. Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA, 86, 5286-5290, 1989. https://doi.org/10.1073/pnas.86.14.5286
  19. Yakubovitch, A. V., Solov'yov, I. A, Solov'yov, A. V. & Greiner, W. Conformational changes in glycine triand hexapeptide. Eur. Phys. J. D39, 23-34, 2006.
  20. Balasubramaniam, Y., Ramasamy, K., Subramaniam, B. & Ponmalai, K. Combined theoretical studies on solvation and hydrogen bond interactions in glycine tripeptide. Molecular Simulation, 40, 942-958, 2014. https://doi.org/10.1080/08927022.2013.828837