DFT Conformational Study of Calix[6]arene: Hydrogen Bond

Kwangho Kim and Jong-In Choe
Deparment of Chemistry, Chung-Ang Unversitr, Seoul 156-756. Korea. ${ }^{*}$ E-mall: choejiôcau ac. kr Received January 20, 2009, Accepted February 21, 2009

Abstract

We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2). The structures of various conformers of $\mathbf{1}$ were optimized by using the B3LYP/6-31G(d,p) and $/ 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ methods followed by single point calculation of MPWIPW9i/ $6-31 \mathrm{G}(\mathrm{d} . \mathrm{p})$. The relative stability of the confomers of $\mathbf{1}$ is in the following order: cone (pinched: most stable) $>$ partial-cone $>$ cone $($ winged $) \sim 1,2$-altemate $\sim 1,2,3$-alternate $>1,4$-altemate $>1,3$-altemate $>1,3,5$-altemate. The structures of different conformers of $\mathbf{2}$ were optimized by using the $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method followed by single point calculation of MPW1PW91/6-31G(d,p). The relative stability of the conformers of $\mathbf{2}$ is in the following order: cone $($ pinched $)>1,2$-alternate $>$ cone $($ winged $)>1,4$-alternate \sim partial-cone $>1,2,3$-alternate $>1,3,5$ alternate $>$ 1,3 -alternate. One of the important factors affecting the relative stabilities of the various conformers of the $\mathbf{1}$ and $\mathbf{2}$ is the number and strength of the intramolecular hydrogen bonds.

Key Words: DFT, MPW 1PW91, Calix[6]arene. Conformer. Hydrogen bond

Introduction

Calixarenes having four, six, or eight repeating units are well studied among the varying structures of calix[n]arenes. ${ }^{\text {. }}$ Calix[4]arenes have proven to be useful building blocks in supramolecular chemistry. because of the possibility of selective functionalization and control over the conformation. The selective functionalization of calix[6] arenes has been explored. ${ }^{2}$ but in contrast to calix[4]arenes. it is difficult to immobilize the conformations of calix[6]arenes.

Intramolecular hydrogen bond formation determines the stability of conformations of unsubstituted calix[n]arenes. ${ }^{3}$ The conformational characteristics of calix[6]arene were studied by using the molecular mechanical method. ${ }^{4}$ The most stable conformation of calis[6]arenes (1^{5} and 2^{65}) (Chart 1) in the solid state is called a pinched cone because two methylene bridges are pointing into the cavity (Figures $I(a)$ and 2(a)). The skeleton of calix[6]arene is pinched to allow for a circular array of six hydrogen bonds. Early measurements by Gutsche et al. with ${ }^{1} \mathrm{H}$ NMR spectroscopy have shown that in solution p-tert-butylcalix[6]arene 2 is conformationally flexible. ${ }^{\text {3a }}$ From the coalescence of the methylene hydrogens. they postulated the interconversion of two equivalent cone conformations. Molins et al. ${ }^{8}$ published a sophisticated 2D NMR study of upper rim substituted trichlorocalix[6]arene. Their conformation is described as a winged cone. with four aryl groups in up alignment and two aryl groups located at opposite sites bent outside (Figures 1(c) and 2(c)). All six methylene bridges are pointing outward. The findings of Molins et al. have been disputed by Reinhoudt group. ${ }^{9}$ This group claimed that the pinched cone found in the solid state is also the conformation in solution.

Recently we have reported the $D F T$ calculation results for the conformers and hydrogen bondings of t-butylcalix[5]arene (3). t-butylcalix[4]arene (4) and monomethoxycalix[5]arene. ${ }^{10.1]}$ The first objective of this research is to determine the relative stability of different conformational isomers for calix-

Chart 1. Chemdraw structures of calis[6]arene (1), p-tent-butylcalix [6] arene (2), p-tent-butylcalis[5]arene (3) and the cone conformer of p-ten-butylcalis[4]arene (4).

1,2-Alternate

1,2,3-Alternate

1,3-Alternate

1,4-Alternate

1,3,5-Alternate

Chart 2. The shetches of the eight conformations of caliy[6]arene.
[6]arene (1) and p-tert-butylcalix[6]arene (2) by using the $D F T$ calculation. The second objective is to investigate the intramolecular hydrogen bonds by the hydroxyl groups of the 1 and 2.

Computational Methods

The initial pinched cone-type structures of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2) were obtained from Cambridge Structure Database ($\mathrm{CSD}^{12 \mathrm{a}}$ entry NOB LEV^{136} (1) and KENBUA ${ }^{12 c}$ (2)), and other conformations are constructed by using the molecular mechanics (MM) molecular dynamics (MD), and AM1 calculations of HyperChem. ${ }^{13}$ In order to find the optimized conformers, we executed a conformational search by using a simulated annealing method. which has been described in a previous publication. ${ }^{14}$ The conformational isomers of $\mathbf{1}$ and $\mathbf{2}$ obtained from the MM/MD and AM1 semi-empirical calculations were fully re-optimized by using the $D F T$ methods to determine the relative energies and the structures of eight distinct conformations in Chart 2. The level of theory used was Becke's three-parameter exchange functional in combination with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) ${ }^{15,16}$ and the $6-31 G(d . p)$ basis set. Consecutive B3LYP/6-3IG(d.p) and B3LYP/6-31+G(d.p) optimizations followed by single point calculation of MPWIPW9 1/6-3IG(d.p) using Gaussian 03^{17} were performed.

Results and Discussion

It is well known that the p-tert-butylcalix[5]arene (3) and p-tert-butylcalix[4]arene (4) form strong intramolecular hydrogen bonds among OH groups and represent the cone conformer as the most stable structure among four conformations (cone. partial cone. 1.2-alternate and 1,3-alternate). ${ }^{4}$

The possible conformations of calix[6]arene (1) and p-tertbutylcalix[6]arene (2) are cone (pinched or winged), partial cone. 1.2-altemate. 1,3-alternate. 1.4-alternate, 1.2.3-alternate. 1.2.4-alternate. and 1,3.5-alternate. The DFT optimizations without any constraint were carried out for the distinct conformers of the $\mathbf{1}$ and $\mathbf{2}$, respectively.

Table 1 shows the total and relative energies of the conformers of calix[6]arene (1) calculated by the DFT B3LYP/6$31 \mathrm{G}(\mathrm{d} . \mathrm{p})$, B3LYP/6-31+G(d.p) and MPW1PW91/6-31G(d.p) calculations. consecutively. During the $D F T$ optimization of 1.2.4-alternate conformation, this structure spontaneously changed to the most stable pinched cone. Therefore. the energy of the 1.2,4-altemate conformer is onitted in Tables 1 and 2. The relative stabilities of B3LYP/6-31+G(d.p) calculation results of $\mathbf{1}$ are in the following order: cone (pinched: most stable) $>$ partial-cone $>$ cone (ninged) ~ 1.2-alternate $\sim 1.2 .3-$ alternate >1.4-alternate $>1,3$-alternate $>1,3.5$-alternate .

We also report the calculated results of the DFT B3LYP/ 6-3IG(d.p) and MPWIPW9I/6-3IG(d.p) calculations for the conformers of p-tert-butylcalii[6$]$ arene (2). The B3LYP/6-31+G

Table 1. DFT Calculated Energies ${ }^{a}$ of the Various Conformers of 1

Confonners	cone (pinched)	$\begin{gathered} \text { cone } \\ \text { (winged) } \end{gathered}$	pc	12a	13 a	14a	123a	$135 a$
$\underset{/ 6-3 \mathrm{BG}(\mathrm{~d}, \mathrm{p})^{\text {C }}}{ }$	-2073.6287	-2073.6046	-2073.6098	-2073.6036	-2073.5935	-2073.5973	-2073.6030	-2073.5849
ΔE^{d}	000	15.14	11.85	15.75	22.11	19.72	16.12	27.48
$\begin{gathered} \text { B3LYP } \\ / 6-31+G(d, p)^{\prime} \end{gathered}$	-2073.6982	-2073.6762	-2073.6817	-2073.6761	-2073.6687	-2073.6698	-2073.6766	-2073.6609
ΔE^{d}	0.00	1380	10.37	13.87	18.55	17.81	13.59	23.44
MPWIPW91 $16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p})^{9}$	-2073.1652	-2073.1419	-2073.1480	-2073.1416	-2073.1324	-2073.1347	-2073.1407	-2073.1254
ΔE^{d}	0.00	14.65	10.79	14.83	20.58	19.15	15.40	25.02

${ }^{4}$ The unit of DFT energy is in a.u. "Conformer: "pc" denotes partial cone. " 12 a " means 1,2 -altemate, etc. (See Figure 1.) "Optimized Energy " ΔE (kcal mol) is the relative energy with respect to the most stable conformation (pinched cone). Error limits in these calculations are about 0.01 kcal mol
'Single point energy: MPW1PW91 $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$) B3LYP:6-31-G(d.p)

Table 2. DFT Calculated Energies ${ }^{a}$ of the Various Conformers of 2

Contormer ${ }^{b}$	cone (pinched)	cone (winged)	pc	12a	13a	14 a	123a	135a
$\begin{gathered} \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p})^{c} \end{gathered}$	-3017.2218	-3017.1987	-3017.1931	-3017.2047	-3017.1842	-3017.1999	-3017.1884	-3017.1786
ΔE^{d}	0.00	14.48	18.03	10.72	23.58	13.77	20.99	27.12
MPWIPW9I /6-3IG(d, p) ${ }^{\circ}$	-3016.5551	-3016.5340	-3016.5287	-3016.3402	-3016.5148	-3016.5290	-3016.5232	-3016.5173
ΔE^{d}	0.00	13.27	16.58	9.37	25.32	16.41	20.01	23.73

akcasee the footnotes in Table 1. 'Single point energy: MPW1PW916-31G(d,p)? B3LYP6-31G(d.p)
(d.p) calculation of 2 was impossible to be completed with our computing resources. Table 2 shows the total and relative energies of the conformers of $\mathbf{2}$. The relative stabilities of the MPWIPW9 $1 / 6-31 \mathrm{G}$ (d.p) calculation results of 2 are in the following order: cone (pinched) >1.2-altemate $>$ cone (winged $)>1.4$-alternate \sim partial-cone $>1.2,3$-altemate $>1.3 .5-$ alternate >1.3-alternate.

One of the important factors affecting the relative stabilities of the various conformers of the calix[6]arenes is the number and strength of the intramolecular hydrogen bonds. The good stability of $1.2,3$-altemate conformer of 1 among the less stable conformers can be explained by the four hydrogen bonds, whereas 1 (1,3-altemate) has three H -bonds and $\mathbf{1}(1.3 .5$-alternate) has none. We will explain the characteristics of the lydrogen bonds in various conformers later in

(a) cone (pinched, bottom view, PosMol)

(c) Cone (winged, PosMol)

(e) partial-cone (PosMol)

(b) cone (pinched: side view, Chem.3D)

(d) cone (winged; Chem3D)

(t) partial-cone (Chem3D)
this section.
The MPWIPW91/6-3IG(d.p) calculated relative stabilities of the conformations of $\mathbf{1}$ in Table 1 suggest that the cone (pinched) conformer is $10.79 \mathrm{kcal} / \mathrm{mol}$ more stable than partialcone. about $15.0 \mathrm{kcal} / \mathrm{mol}$ more stable than cone (winged). 1.2-alternate and 1,2,3-alternate analogues. about $19.9 \mathrm{kcal} /$ mol more stable than 1.3-alternate and 1.4-alternate. and $25.02 \mathrm{kcal} / \mathrm{mol}$ more stable than $1,3.5$-altemate, respectively.
However. The MPW1PW91/6-31G(d.p) calculated relative stabilities of the conformations of $\mathbf{2}$ in Table 2 suggest that the cone conformer is $9.37 \mathrm{kcal} / \mathrm{mol}$ more stable than 1.2 -alter nate. $13.27 \mathrm{kcal} / \mathrm{mol}$ more stable than cone (winged), about $16.5 \mathrm{kcal} / \mathrm{mol}$ more stable than 1,4 -alternate and partial-cone, $20.01 \mathrm{kcal} / \mathrm{mol}$ more stable than 1.2 .3 -altemate conformers. $23.73 \mathrm{kcal} / \mathrm{mol}$ more stable than 1.3 .5 -alternate, and 25.32

Figure 1. (continued)

(g) 1,2-altemate (PosMol)

(i) 1,3-altemate (PosMol)

(k) 1.4-alternate (Pos Mol)

(m) 1,2,3-altemate (PosMol)

(h) 1,2-alternate (Chem3D)

(j) 1,3-alternate (Chem3D)

(l) 1,4-alternate (Chem3L))

(n) 1,2,3-altemate (Chem3D)

Figure 1. (continued)

(o) 1,3,5-altentate (PosMol)

(p) 1,3,5-alternate (Chem3D)

Figure 1. DFT B3LYP/6-31+G(d, p) optimized molecular structures of the contomers of 1 (calix[6]arene). (a) Bottom view of the pinched cone confonmer by PosMol ${ }^{19}$ with hydrogen bonds shown, (b) side view of the pinched cone confonmer by Chem3D ${ }^{20}$ without hydrogen atoms, (c) bottom view of the winged cone, (d) side view of the winged cone, (e) bottom view of the partial-cone, (f) side view of the partial-cone confonmer. (g) bottom view of the 1,2 -alternate, (h) side view of the 1,2 -altemate, (i) bottom view of the 1,3 -alternate, and (i) side view of the 1,3 -altemate, (k) bottom view of the 1,4-altemate, and (1) side view of the 1,4-altemate, (m) bottom view of the $1,2,3$-alternate, and (n) side view of the $1,2,3$-alternate, (0) bottom view of the 1,3,5-altemate, and (p) side view of the $1,3,5$-altemate. Atoms that are within a certain distance (the bond proximate distance) from one another were automatically marked as bonded. ${ }^{19}$ Therefore, the hydrogen bonds in the figures of 1 and 2 drawn by PosMol ${ }^{19}$ are not real covalent bonds.

(a) cone (pinched. PosMol)

(c) cone (winged, PosMol)

(b) cone (pinched, Chem3D)

(d) cone (winged; Chem3D)

Figure 2. (continued)

(e) partial-cone (PosMol)

(g) 1,2-altemate (PosMol)

(i) 1,3 -altennate (PosMol)

(k) 1,4-altemate (PosMol)

(f) partial-cone (Chem3D)

(h) 1,2-alternate (Chem3D)

(j) 1,3-alternate (Chem3D)

(1) 1,4-alternate (Chem3D)

Figure 2. (continued)

(min) 1,2,3-altemate (PosMol)

(o) 1,3,5-altennate (PosMol)

(n) 1,2,3-alternate (Chem3D)

(p) 1,3,5-altemate (Chem3D)

Figure 2. $D F T$ B3LYP/6-3IG(d,p) optimized molecular structures of the confomers of 2 (p-tert-butylcalix[6]arene). (a) Top view of the pinched cone conformer with hydrogen bonds shown, (b) side view of the pinched cone contomer without hydrogen atoms, (c) bottom view of the winged cone, (d) side view of the winged cone, (e) top view of the partial-cone, (f) side view of the partial-cone, (g) top view of the 1,2-altemate, (h) side view of the 1,2-altemate, (i) top view of the 1,3 -altemate, and (j) side view of the 1,3 -alternate, (k) bottom view of the 1,4 -altemate, and (1) side view of the 1,4-altemate, (m) bottom view of the $1,2,3$-altemate, (n) side view of the $1,2,3$-altemate, (0) bottom view of the 1,3,5-altennate, (p) side view of the 1,3,5-alternate.
$\mathrm{kcal} / \mathrm{mol}$ more stable than 1,3-alternate, respectively. Due to the steric hindrances of p-tert-butyl groups of 2 . the energy differences between conformers of $\mathbf{2}$ are bigger than the values of 1 .

Figure 1 shows the DFT B3LYP/6-31+G(d.p) optimized stable structures showing hydrogen bondings of the various conformers of the calis[6]arene (1). The $\mathbf{1}$ (pinched cone) (Figure $\mathrm{I}(\mathrm{a})$) having six hydrogen bonds is the most stable. and the conformers (partial cone, winged cone, 1.2 -alternate and 1.2.3-alternate) having four hydrogen bonds are next in the order. The 1.3 .5 -alternate (Figure $1(0)$) which has no H -bond is the least stable conformation.

Figure 2 shows the DFT B3LYP/6-31G(d.p) optimized stable structures showing hydrogen bondings of the various conformers of the tert-butylcalix[6]arene (2). The pinched cone conformer (Figure 2(a)) of 2 having six hydrogen bonds is the most stable, and 2(1.2-alternate: Figure 2(g)) having four hydrogen bonds is next in the order. The steric hindrances between adjacent p-tert-butylbenzyl groups are not much critical in the relative stability of the various conformations of the p-tert-butylcalix[6]arene, since the cavity size made of six benzene rings are big enough. (See Chart 2 and Figure 2.) We have changed the up-down direction in the

Figures 1 (d) and 2(d) to show the structure better for the winged cone conformers of $\mathbf{1}$ and 2.

Table 3 lists the DFT calculated distances and angles of intramolecular hydrogen bonds of 1 . In general. if $\mathrm{O} \cdots \mathrm{O}$ distance is less than $3.0 \AA$, one interprets that the ($\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$) hydrogen bond is relatively strong for this intramolecular case. ${ }^{18}$ The $\mathrm{O} \cdots \mathrm{O}$ distances of $2.64 \sim 2.80 \mathrm{~A}$ in Table 3 suggest that these calculated values in the calix[6]arene (1) display strong hydrogen bonds.

In order to compare our calculated H -bond distances of 1 with the values of the intramolecular hydrogen bonds of t-butylcalix[6]arene (2). we have tabulated the DFT calculated H -bond distances of 2 (Table 5). The average calculated $\mathrm{O} \cdots \mathrm{O}$ distances ($2.638 \AA$ in Table 3 and $2.640 \AA$ in Table 5) of the intramolecular hydrogen bonds of the cone conformers of calix[6]arene (1) and t-buty lcalix[6]arene (2) are similar to the experimental crystal structure values (2.585 and $2.597 \AA$. respectively) in Table 4. The calculated $\mathrm{O} \cdots$ o distances (2.71 $\sim 2.79 \mathrm{~A}$) of the less stable conformations are $0.07 \sim 0.15 \mathrm{~A}$ longer than the most stable cone conformer.

One usually recognizes that the ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) hydrogen bond is stronger if the $\left(\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}\right)$ angle is closer to 180°. ${ }^{18}$ Our calculated average ($\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$) angles of $163^{\circ} \sim 171^{\circ}$ in Table

Table 3. $D F T$ Calculated Distances (\AA) and Angles ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) of Intramolecular Hydrogen Bonds of 1

Confomer	H-bond	1	2	3	4	5	6	\%	Average
1 (cone) (pinched)	O \cdots	2.637	2.650	2.632	2.637	2.650	2.632	6	2.640
	$\mathrm{H} \cdots \mathrm{O}$	1.664	1.670	1.643	1.664	1.670	1.643		1.659
	O-H	0.990	0.991	0.991	0.990	0.991	0.991		0.991
	Angle()	166.6	168.9	175.8	166.6	168.9	175.8		170.4
1 (cone) (w:nged)	O \cdots	2.778	2.745	2.778	2.745			4	2.762
	$\mathrm{H} \cdots \mathrm{O}$	1.844	1.822	1.844	1.822				1.833
	O-H	0.978	0.978	0.978	0.978				0.978
	Angle(\%)	158.6	156.0	158.6	156.0				157.3
1(p)	$\mathrm{O} \cdots \mathrm{O}$	2.796	2.698	2.673	2.681			4	2.712
	$\mathrm{H} \cdots \mathrm{O}$	1.707	1.695	1.714	1.856				1.743
	O-H	0.984	0.987	0.985	0.979				0.984
	Angle(${ }^{\text {a }}$)	169.8	170.5	176.5	160.1				169.2
1(12a)	$0 \cdots 0$	2.729	2.659	2.711	2.941			4	2.760
	$\mathrm{H}^{\cdots} \mathrm{O}$	1.739	1.695	1.773	2.001				1.802
	$\mathrm{O}-\mathrm{H}$	0.980	0.984	0.979	0.971				0.979
	Angle (8)	171.1	165.4	164.8	162.6				166.0
1(13a)	$0 \cdots 0$	2.712	2.752	2.883				3	2.782
	$\mathrm{H}^{\cdots} \cdot \mathrm{O}$	1.751	1.787	1.961					1.833
	O-H	0.981	0.980	0.976					0.979
	Angles)	165.3	167.9	156.6					163.3
1(142)	$0 \cdots 0$	2.732	2.764					2	2.748
	$\mathrm{H}^{\cdots} \mathrm{O}$	1.762	1.788						1.775
	O-H	0.981	0.980						0.981
	Angle()	169.1	173.7						171.4
1(123a)	$0 \cdots$	2.729	2.840	2.845	2.764			4	2.795
	$\mathrm{H} \cdots \mathrm{O}$	1.749	1.865	1.898	1.800				1.828
	O-H	0.981	0.981	0.977	0.977				0.979
	Angle()	174.8	172.6	162.5	168.3				169.6
1(135a)	$0 \cdots 0$							0	

Table 4. Experimental $\mathrm{O} \cdots \mathrm{O}$ Distances (\AA)) in Intramolecular Hydrogen Bonds of 1 and 2

Molecule	H-bond	1	2	3	4	5	6	\dot{F}	Average
$1(\text { cone })^{13}$	$0 \cdots 0$	2.570	2.631	2.554	2.570	2.631	2.554	6	2.585
$2(\text { cone })^{13 r}$	$0 \cdots 0$	2.648	2.609	2.621	2.610	2.522	2.573	6	2.597

3 and $166^{\circ} \sim 171^{\circ}$ in Table 5 tell that the hydrogen bondings in the calis[6]arenes ($\mathbf{1}$ and $\mathbf{2}$) are almost linear and very strong.

Conclusion

The relative stabilities of the conformers of the calix[6]arene (1) and t-butylcalix[6]arene (2) are mainly' dependent upon the number and strength of the intramolecular hydrogen bonds than steric hindrance of adjacent rings. The relative stability of the various conformers of $\mathbf{1}$ is in the following order: cone (pinched: most stable) > partial-cone $>$ cone (winged) ~ 1.2-alternate $\sim 1,2,3$-alternate $>1,4$-altemate $>$ 1.3 -alternate $>1.3,5$-altemate. The pinched-cone conformers of $\mathbf{1}$ and 2 are 14.65 and $13.27 \mathrm{kcal} / \mathrm{mol}$ more stable than the winged-cones. respectively. The relative stability of the different conformers of $\mathbf{2}$ is in the following order: cone (pinched) $>1,2$-altemate $>$ cone $($ winged $)>1,4$-altemate \sim partial-cone $>1.2 .3$-alternate $>1.3 .5$-alternate >1.3-alternate. The $D F T$ optimized average $\mathrm{O} \cdots \mathrm{O}$ distances (2.638 and $2.640 \AA$) for

Table 5. DFT Calculated Distances (\AA) and Angles $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$ of Intramolecular Hydrogen Bonds of 2

Conformer	H-bond	1	2	3	4	5	6		Averaye
2(cone) (puched)	$\bigcirc \cdots$	2.650	2.632	2.629	2.637	2.650	2.632	6	2.638
	$\mathrm{H} \cdots \mathrm{O}$	1.673	1.644	1.660	1.664	1.670	1.643		1.659
	$\mathrm{O}-\mathrm{H}$	0.991	0.991	0.990	(1.990	0.991	0.991		0.991
	Angle(${ }^{\text {(})}$	167.8	175.1	164.7	166.6	168.9	175.8		169.8
2(cone) ((inged)	$\mathrm{O} \cdots \mathrm{O}$	2.757	2.729	2.751	2.730			4	2.742
	$\mathrm{H} \cdots \mathrm{O}$	1.825	1.794	1.817	1.796				1.808
	$\mathrm{O}-\mathrm{H}$	0.980	0.980	0.980	(1.980				0.980
	Angle(${ }^{\text {(}}$)	157.9	158.6	158.2	158.3				158.3
2(po)	$\mathrm{O} \cdots \mathrm{O}$	2.795	2.767					2	2.781
	$\mathrm{H} \cdots \mathrm{O}$	1.793	1.827						1.810
	$\mathrm{O}-\mathrm{H}$	0.980	0.978						0.979
	Angle($\left.{ }^{(}\right)$	171.9	169.7						170.8
2(12a)	$\mathrm{O} \cdots \mathrm{O}$	2.677	2.659	2.694	2.941			4	2.743
	$\mathrm{H}^{\cdots} \mathrm{O}$	1.711	1.689	1.720	2.001				1.780
	$\mathrm{O}-\mathrm{H}$	0.984	0.987	0.982	0.971				0.981
	Angle(e)	166.1	1665	170.7	162.6				166.5
2(13a)	$\mathrm{O} \cdots \mathrm{O}$	2.778						1	2.778
	$\mathrm{H} \cdots \mathrm{O}$	1.816							1.816
	$\mathrm{O}-\mathrm{H}$	0.976							0.976
	Angle(e)	168.1							168.1.
2(14a)	$\mathrm{O} \cdots \mathrm{O}$	2.776	2.769					2	2.773
	$\mathrm{H}^{\cdots} \mathrm{O}$	1.812	1.804						1.808
	$\mathrm{O}-\mathrm{H}$	0.978	0.978						0.978
	Angle(s)	167.9	168.3						168.1.
2(123a)	$\mathrm{O} \cdots \mathrm{O}$	2.708	2.679	2.764				3	2.717
	$\mathrm{H} \cdots \mathrm{O}$	1.741	1.694	1.796					1.744
	O - H	0.984	0.986	0.979					0.983
	Angle($\left.{ }^{(}\right)$	166.5	175.1	169.8					170.5
2(135a)	$\mathrm{O} \cdots \mathrm{O}$							0	

the pinched cone conformations of $\mathbf{1}$ and $\mathbf{2}$ are similar to the experimental distances ($2.585 \AA$ and $2.597 \AA$. respectively). Our calculated average ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) angles of $163^{\circ} \sim 171^{\circ}$ tell that the hydrogen bondings in the calix[6]arenes ($\mathbf{1}$ and 2) are very strong.

Acknowledgments. This research was supported by the Chung-Ang University research grants in 2009. The large portions of the computations were carried out with use of the computer facilities at the Research Center for Computational Science of the Okazaki National Research Institutes in Japan.

References

1. (a) Calixavenes in Action, Mandolini, L.; Ungaro, R., Eds.; World Scientific Publishers Co.: Singapore, 2007. (b) Gutsche, C. D. Calixarenes Revisited, Royal Society of Chemistry: Cambridge, 1998. (c) Calixannes $50^{\text {th }}$-Amiversan: Commemorative Folume: Vicens, J.; Asfari, Z.; Harrowfield, J. M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. (e) Gutsche, C. D. Calixarenes. Royal Society of Chemistry: Cambridge, 1989. (f) Calixarenes: A Versatile Class of Aacrocyclic Compounds, Vicens, J; Bö hmer, V, Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
2. (a) Kanamathareddy, S.: Gutsche, C. D. J. Org. Chem. 1994, 59, 3871 . (b) Otsuka, H.: Araki, K.; Shinkai, S. J. Org. Chem. 1994, 59, 1542. (c) Neri, P.: Rocco, C.: Consoli, G. M. L.; Piattelli, M. J. Org. Chem. 1993, 58,6535 . (d) Neri, P.; Foti, M.; Ferguson, G.; Gallagher, J. F.; Kaitner, B.; Pons, M;; Molins, M. A.;

Giunta, L.: Pappalardo, S. J. Am. Chem. Soc. 1992, 114, 7814. (e) Janssen, R. G.; Verboom, W.; Harkema, S.; van Hummel, G. T.: Reinhoudt, D. N.: Pochini, A.: Ungaro, R.: Prados, P.; de Mendoza, I. J. Chem. Soc., Chent. Commum. 1993, 506. (f) Tanssen, R. G.; van Duynhoven, J. P. M.; Verboom, W.; van Hunmel, G. J.: Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1996, 118, 3666. (g) Tanssen, R. G.; Verboom, W.; Reinhoudt, D. N.: Casnati, A; Freriks, M; Pochini, A; Ugozolli, F.; Ungaro, R.: Nieto, P. M.: Carramolino, M.; Cuevas, F.: Prados, P.: de Mendoza, J. Symhesis 1993, 380. (h) Moran, T. K.; Georgiev, E. M.; Yordanov, A. T.: Mague, J. T.: Roundhill, D. M. J. Org. Chem. 1994, 59, 5990 .
3. (a) Gutsche, C. D.: Bauer, J. J. Am. Chem. Soc: 1985, 107,6052. (b) Lutz, B. T. G.: Astarloa, G.i. van der Maas, J. H., Janssen, R. G.; Verboom, W.; Reinhoudt, D. N. Iib. Spectrosc. 1995, $10,29$.
4. van Hoom, W. P.; van Veggel, F. C. T. M.; Reinhoudt, D. N. J. Org Chem. 1996, 61, 7180.
5. Atwood, I. L.; Barbour, L. J.: Raston, C. L.; Sudria, I. B. N. Angew: Chen., Int. Ed. 1998, 37, 981.
6. Andretti, G. D.: Ugozzoli, F.: Casnati, A.: Ghidini, E.: Pochinni, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119. 47.
7. Halit, M.: Oehler, D.; Perrin, M.; Thozet, A.; Perrin, R.; Vicens, I.: Bourakhoudar, M. J. Inclusion Phenom. 1988, $6,613$.
8. Molins, M. A.; Nieto, P. M.; Sanchez, C.; Prados, P.; de Mendoza, T.: Pons, M. J. Org. Chem. 1992, 57, 6924.
9. Tanssen, R. G., van Duynhovent, J. P. M.: Verboom, W.: van Hummel, G. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1996, /18, 3666.
10. Kim, K.: Park, S. T.: Choe, T.-I. Bull. Korean Chem. Soc 2008, 29, 1893.
11. Kim, K.: Lee, S. H.: Choe, T-I. Bull. Korean Chem. Soc. 2008, 29, 2152.
12. (a) Cambridge Stricture Database Cambridge Crystallographic Data Centre: Cambridge, U. K., 2008. (b) Atwood, I. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew: Chem. 1998, 37, 981. (c) Andretti, G. D.; Ugozzoli, F; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47.
13. HyperChem Release 7.5: Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
14. Choe, J.-I.; Kim, K.: Chang. S.-K. BuIl. Korean Chem. Soc. 2000, 21,465.
15. (a)Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b)Lee, C.; Yang, W.: Part, R. G. Phus Rev: B 1988, $37,785$.
16. (a) Lynch, B. I.; Fast, P. L.: Harris, M.; Truhlar, D. G. J. Phus. Chem. A 2000, 104, 4811 . (b) Zhao, Y.; Tishchenko, O.; Truliar, D. G. J. Phys. Chent. B 2005, 109, 19046. (c) Tsuzuki, S.; Lüthi, H. P. J. Chem. Phus 2001, 114, 3949 (d) Schreiner, P. R.; Fokin, A. A.: Pascal, R. A.: Meijere, A. Oig. Lett. 2006, 8, 3635.
17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr, J. A.; Vreven, T.; Kudin, K. N.: Burant, T. C.: Millam, J. M.; Iyengar, S. S.; Tomasi, T.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.: Nakatsuij, H.: Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T; Honda, Y.; Kitao, O; Nahai, H.; Klene, M.; Li, X.; Knox, J. E; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.: Jaramillo, J.: Gomperts, R.; Stratmann, R. E.: Yazyev, O: Austin, A. I.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakizewski, V. G.: Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.: Malick, D. K.: Rabuck, A. D.; Rag̣havachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, T.; Stefanov, B. B.; Liu, G.; Liashenko, A;; Piskorz, P; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T;; Al-Laham, M. A.: Peng, C. Y.: Nanayakkara, A.; Challacombe, M.: Gill, P. M W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.: Pople, I. A. Gaussion 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
18. (a) Teffrey, G. A. An Inroduction to Hydrogen Bonding; Oxtord Univ. Press: Cambridge, 1997. (b) Pak, C.: Lee, H. M.; Kim, I. C.; Kim, D;: Kim, K. S. Struct. Chem. 2005, 16, 187.
19. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061.
20. Chem3D, Version 7.0, Cambridge Soft: Cambridge, MA, U.S.A., 2001.

