# 캘릭스 $[n]$ 아렌 $(\mathbf{n}=4,5,6)$ 의 이형체들의 상대적인 안정성과 수소결합에 대한 양자역학적 계산연구 

## 김광호•최종인*

중앙대한교 자연과학대한 화학과
(접수 2009. 9. 28: 수정 2009 . 10. 29; 게재확정 2009.11. 2)

# mPW1PW91 Calculated Conformational Study of Calix[n]arene ( $\mathrm{n}=\mathbf{4 , 5 , 6}$ ): Hydrogen Bond 

Kwangho Kim and Jong-In Choe*<br>Deparment of Chemistry, Chung-Ang Lhmersity, Seoul 156-756. Korea<br>(Received September 28, 2009; Revised October 29, 2009; Accepted November 2, 2009)

요약. 캘릭스[n]아렌 (1-4)의 다양한 이형 체둘에 대한 구조둘이 DFT B3LYP/6-3]+O(d.p) 와 mPWIPW91/ $6-31+G(d, p)$ (hybrid HF-DF) 계산 방법 들에 의하여 회적화 되었다. 모든 캘릭스[n]아렌 (1-4)의 다양한 이형체 들 중에서, 수소결합 들의 영향으로, cone 이형 체가 가장 안정하였다. 그러나, 이형 체 둘의 상대적 인 안정성은 다음과 같이 서로 달랎다.

1. $t$-부틸 캘릭 스[4]아렌( $\mathbf{1}$ ) cone $>$ partial-cone > 1,2 -altemate $>1,3$-altemate.
2. $t$-부틸캘릭 스[5]아렌(2): cone $>1,2$-alternate $>$ partial-cone $>1,3$-alternate.
3. 탈 부틸화된 캘릭스[6]아렌(3): cone(pinched) $>$ partial-cone $>$ cone (winged) $\sim 1,2$-alternate $\sim 1,2,3$-alternate $>1,4$-altemate $>1,3$-altemate $>1,3,5$-alternate.
4. $t$-부틸 캘릭스 $[6]$ 아렌 ( $\mathbf{4}$ ): cone (pinched) $>1,2$-alternate $>$ cone(winged) $>1,4$-alternate $\sim$ partial-cone $>1,2,3-$ alternate $>1,3,5$-altemate $>1,3$-alternate.
분자 내부의 수소결합의 개수와 강도들이 캘릭스[n]아렌의 다양한 이형체들의 상대적인 안정성에 가장 영향을 많이 미치는 인자둘이었다. 두 가지 서로 다론 계산방법둘 (B3LYP과 mPWIPW91)에 대 한 여러 가지 이형체들에서의 수소결합 길이들이 비교되었다.
주제어: 캘릭스[n]아렌, 이형체, 수소결합, mPWIPW91, 양자역학


#### Abstract

We have performed $m$ PWIPW 91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene (1), p-tert-butylcalix[5]arene (2), calix[6]arene ( $\mathbf{3}$ ) and $p$-tertbutylcalix[6]arene (4). The structures of the different conformers of $\mathbf{1 - 3}$ were optimized by using $m \mathrm{PW} / \mathrm{PW} 91 /$ $6-31+G(d, p)$ method. The relative stability of the four conformers of $\mathbf{1}$ is in the following order: cone (most stable) $>$ partial-cone $>1,2$-altemate $>1,3$-alternate. The relative stability of the conformers of $\mathbf{2}$ is in the following order: cone (most stable) $>1,2$-altemate $>$ partial-cone $>1,3$-altemate. The relative stability of the various conformers of $\mathbf{3}$ is in the following order: cone (pinched: most stable) $>$ partial-cone $>$ cone (winged) 1,2 -alternate $\sim 1,2,3$-alternate $>1,4$-alternate $>1,3$-alternate $>1,3,5$-alternate. The structures of the various conformers of 4 were optimized by using the $m \mathrm{PW} 1 \mathrm{PW} 91 / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method followed by single point calculation of $m P W 1 P W 91 / 6-31+G(\mathrm{~d}, \mathrm{p})$. The relative stability of the conformers of 4 is in the following order: cone (pinched) $>1,2$-altemate $>$ cone ( winged) $>1,4$-alternate $\sim$ partial-cone $>1,2,3$-alternate $>1,3,5$-alternate $>1,3$-alternate.


The primary factor affecting the relative stabilities of the various conformers of the $1-4$ are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on two different calculation methods (B3LYP and mPW1PW91).

Keyworls: Calix[n]arene, Confomer, $m$ PWIPW $91 / 6-31+\mathrm{G}$, Hydrogen bond

## INTRODUCTION

Calix[n]arenes have been receiving much attention as one of the most widely employed molecular frameworks for the construction of many versatile supramolecular systems. ${ }^{\text { }}$ The relative stabilities of the various conformations of calix[4]aryl derivatives have been determined by experimental and theoretical methods. ${ }^{-8}$ Pentameric analogue calix[5]arenes ${ }^{9.10}$ have received relatively less attention due to their difficulties both in the synthesis and in the selective derivatization compared to the other widely employed members of calixarenes. The conformational characteristics of calix[6]arene were studied by using the molecular mechanical method. ${ }^{\text {ll }}$ The most stable conformation of calix[6]arenes ${ }^{12-1+4}$ in the solid state is called a pinched cone because two methylene bridges are pointing into the cavity.

Intramolecular hỵdrogen bond formation determines the stability of conformations of unsubstituted calix[n]arenes. ${ }^{15}$ Recently, we have reported the $D F T$ B3LYP optimization results for the conformational study and the hydrogen bonding of calix[ n ]arene $(\mathrm{n}=4.5)^{16}$ and the $m$ PW IPW9I single point calculation of calix[6]arenes. ${ }^{17}$ Density functional theory ( $D F T$ ) is very appealing due to its excellent performance-to-cost ratio, and DFT methods are widely employed in the computational chemistry community. However. the most popular DFT method. B3LYP. ${ }^{18.19}$ cannot successfully describe $\pi$ hydrogen bonding ${ }^{2021}$ and B3LYP also fails badly for binding energies dominated by dispersion interactions. ${ }^{\text {2-- }-4}$ Hydrogen bonding involves not only dispersion but also electrostatic interactions. polarization (induction). and charge transfer. ${ }^{25} 5$ Suggestions are new hỵbrid Hartree-Fock-density functional (HF-DF) models called the modified Perdew-Wang l-parameter ( $m \mathrm{PW} 1$ ) calculation methods. ${ }^{27.29}$ suchas $m$ PW1B95. $m$ PWB1K. $m$ PWL-

PW91. which are suitable for hydrogen bonding. The $m$ PWIPW model allows obtaining remarkable results both for covalent and noncovalent interactions. ${ }^{88}$

The first objective of this research is to determine the relative stability of the different conformational isomers for calix[ $n$ ]arene ( $n=4.5 .6$ ) from the total electronic and Gibbs free energies by using the improved $m$ PWIPW91 calculation method. The second objective is to compare the intramolecular hydrogen bonds by the hydroxyl groups of the 1-4 using two different calculation methods (B3LYP and $m$ PW 1PW91).

## COMPUTATIONAL METHODS

The initial structures of p-tert-butylcalix[4]arenes (1) and $p$-tert-butylcalix[4]arenes (2) were constructed by using HyperChem. ${ }^{301}$ The initial pinched cone-type structures of the cali:[6]arene (3) and


1


2

$3 \mathrm{R}=\mathrm{H}$
$4 R=t-B u t y \mid$

Scheme 1. ChemDraw structures of $p$-tent-butylcalix[4]arene (1), $p$-ter-butylcalix[5]arene (2), calix[6]arene (3) and $p$-tert-butylcalix[6]arene (4)
p-tert-butylcalis[6]arene (4) were obtained from Cambridge Structure Database ( $\mathrm{CSD}^{31 a}$ entry NO$\operatorname{BLEV}^{316}(\mathbf{3})$ and $\operatorname{KENBUA}^{31 \mathrm{c}}(\mathbf{4})$ ), and other conformations are constructed by using the molecular mechanics (MM), molecular dynamics (MD), and AM1 semi-empirical calculations of HyperChem. In order to find the optimized conformers, we executed a conformational search by using a simulated annealing method. which has been described in a previous publication. ${ }^{32}$ The conformational isomers of $1-4$ obtained from the MM/MD and AM1 calculations were fully re-optimized by using the DFT and hybrid HF-DF methods to determine the relative energies and the structures of the distinct conformations. Consecutive B3LYP optimizations followed by $m$ PWIPW9 calculations using Gau$\operatorname{ssian} 03^{33}$ were performed. The normal mode frequencies of the $m$ PWIPW91/6-31G optimized structures have been calculated. Each vibrational spectrum shows no negative value of frequency. which confirms that the optimized structure exists in the energy minimum. From the zero-point correction by the vibrational analysis and the thermal correction to free energy. Gibbs free energies at 298 K are also calculated by using the $m$ PWIPW91/ 6-31G method.

## RESULTS AND DISCUSSION

It is well known that the calis[ 4 ]arene and calix[5]arene form strong intramolecular hydrogen
bonds among OH groups and represent the cone conformer as the most stable structure ${ }^{-2.116}$ Substitution of all the phenolic protons of a p-tertbutylcalix[4]arene by a bulky alkyl group generally leads to conformationally rigid structures like the tetraethyl ester of $p$-tert-butylcalix[ 4 ]arene. ${ }^{4}$ However, when the substituent is small enough such as a methyl group. the resulting tetramethyl ether of p-tert-butylcali:[4]arene is no longer rigid. and any anisole ring can rotate wia oxygen-through-the-annulus to give a misture of the four possible conformers. ${ }^{5-8}$

The $p$-tert-butylcalix[4]arene (1) and $p$-tert-butylcalix[5]arene (2) are identical with respect to the numbers of up/down conformations that are possible, and for convenience the same descriptive names are used for both: cone, partial cone. 1,2alternate or 1.3 -alternate. The DFT optimizations without any constraint were carried out for the four conformers of the $\mathbf{1}$ and $\mathbf{2}$.

Table 1 reports the $m$ PWIPW91/6-31+G(d.p) optimized total electronic and relative energies. and dipole moments of the four conformers of 1. Sums of total electronic and thermal Gibbs free energies calculated from the $m$ PWIPW9I/6-3IG method are also listed from the zero-point correction by the vibrational analyses and thermal correction to free energy at 298 K . The calculation results suggest that the cone conformer is the most stable among the conformational isomers of $\mathbf{1}$ in the following order: cone $>$ partial-cone $>1.2$-alternate $>1.3-$

Table 1.nPW1PW91 Optimized Total, ${ }^{3}$ Gibbs Free and Relative Energies, and Dipole moments of the Various Conformers ${ }^{\text {b }}$ of 1

| Calculation Method | $\begin{aligned} & \text { Total (a.u. })^{2} \\ & \text { Cone } \end{aligned}$ | $\Delta E(\mathrm{kcal} / \mathrm{mol})^{*}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Partial-cone | 1,2-Alternate | 1,3-Alternate |
| $m \mathrm{PW} 1 \mathrm{PW} 91 / 6-31+\mathrm{G}\left(\mathrm{d}_{\mathrm{p}}\right)^{\text {c }}$ | -2011.0784 | 7.53 | 10.85 | 12.25 |
| $m$ PWIPW9 1/6-31G(d, p$)^{\circ}$ | -2011.0373 | 9.22 | 12.38 | 15.15 |
| $m$ PWIPW9 $1 / 6-31 \mathrm{G}^{\circ}$ | -2010.4597 | 15.16 | 19.08 | 27.01 |
| ${ }_{n}$ PWIPW91/6-31G (298 K) ${ }^{\text {d }}$ (Gibbs Free Energy) | -2009.6141 | 13.99 | 17.17 | 24.73 |
| Dipole Moment ${ }^{\text {e }}$ | 2.72 | 1.25 | 0.06 | 0.05 |

${ }^{3}$ The unit of total energy is in a.u. Error limits in these calculations are about 0.01 keal mol. "Conformer: "pe" denotes partialcone. " 12 a' $^{\prime \prime}$ means 1.2 -alternate. etc. ${ }^{\circ}$ Total electronic energies ( $\left.\mathrm{a} . \mathrm{u}.\right)$ at 0 K . $\pm E$ ( kcal mol ) is the relative energy with respect to the most stable cone conformation. ${ }^{4}$ Sum of electronic and thermal Gibbs free energies at $298 \mathrm{~K} . \Delta G$ (kcal mol ) is the relative free energy. ${ }^{\text {E }}$ Total Dipole moment in Debye calculated from the final structure by using $m$ PW1PW916-31-G(d.p)method.

Table 2. mPW1PW91 Optimized Total, ${ }^{2}$ Gibbs Free and Relative Energies, and Dipole moments of the Various Confommers of $\mathbf{2}$

| Calculation Method | $\begin{gathered} \text { Total (a.lu. })^{2} \\ \text { Cone } \end{gathered}$ | $\Delta E(\mathrm{kcal} / \mathrm{mol})^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Partial-cone | 1,2-Alternate | 1,3-Altemate |
| ${ }^{2} \mathrm{PWW} 1 \mathrm{PW} 91 / 6-3 \mathrm{l}+\mathrm{G}(\mathrm{d}, p)^{\circ}$ | -2513.8457 | 8.49 | 4.23 | 13.48 |
| mPWIPW91/6-31G(d.p $)^{\text {c }}$ | -2513.7924 | 9.69 | 4.13 | 14.69 |
| $m \mathrm{PW} 1 \mathrm{PW} 91 / 6-31 \mathrm{G}^{\circ}$ | -2513.0723 | 17.66 | 7.83 | 27.59 |
| $m \mathrm{PW} 1 \mathrm{PW} 91 / 6-31 \mathrm{G}(298 \mathrm{~K})^{\text {d }}$ (Gibbs Free Energy) | -2512.0114 | 17.42 | 8.59 | 26.40 |
| Dipole Moment ${ }^{\text {e }}$ | 2.13 | 3.96 | 1.16 | 3.79 |

${ }^{a-\varepsilon}$ See the footnotes of Table 1

Table 3. mPW IPW91 Optimized Total ${ }^{3}$, Gibbs Free and Relative Energies, and Dipole moments of the Various Conformers of 3

| $m$ PW1PW91 | $\begin{aligned} & \text { Total (a.lu.) }{ }^{3} \\ & \text { cone (pinched) } \end{aligned}$ | $\Delta E(\mathrm{kcal} / \mathrm{mol})^{\text {c }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | cone (winged) | pe | 12a | 13a | 14 a | 123a | 1350 |
| $16-31+\mathrm{G}(\mathrm{d}, \mathrm{p})^{\text {c }}$ | -2073.2231 | 13.05 | 9.38 | 12.89 | 17.22 | 17.03 | 12.96 | 20.48 |
| $16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})^{\text {c }}$ | -2073.1685 | 14.13 | 10.72 | 14.65 | 20.42 | 18.72 | 15.25 | 24.34 |
| 16-31G ${ }^{\circ}$ | -2072.6008 | 26.56 | 17.81 | 27.39 | 35.08 | 33.06 | 26.86 | 47.99 |
| $\begin{aligned} & / 6-31 \mathrm{G}(298 \mathrm{~K})^{\mathrm{d}} \\ & \text { (Gibbs Free Energy) } \end{aligned}$ | -2071.9703 | 13.05 | 15.35 | 26.70 | 31.52 | 31.14 | 25.94 | 43.93 |
| Dipole Moment ${ }^{\text {e }}$ | 0.95 | 1.59 | 1.40 | 6.79 | 1.11 | 1.98 | 1.49 | 4.46 |

${ }^{\text {a.e See the footnotes of Table } 1}$
alternate.
The mPWIPW91/6-3I+G(d.p) calculated relative stabilities of the conformations of $\mathbf{1}$ in Table 1 suggest that the cone conformer is $7.53 \mathrm{kcal} / \mathrm{mol}$ more stable than partial-cone. $10.85 \mathrm{kcal} / \mathrm{mol}$ more stable than 1,2 -alternate. and $12.25 \mathrm{kcal} / \mathrm{mol}$ more stable than 1,3-altemate analogue, respectively. In the case of the original calis[ 4 ] arene without $p$-tertbutyl group, the relative stability was calculated in different order where 1.3-alternate conformer had slightly better stability than the 1.2-alternate analogue. ${ }^{\text {in }}$

Table 2 shows the total electronic. Gibbs free and relative energies. and dipole moments of the four distinct conformers of $p$-tert-butylcalix[5]arene (2) optimized by the $m$ PWIPW 91 calculations. The cone conformer is the most stable one among the conformational isomers of 2 . However. the order (cone > 1,2 -alternate $>$ partial-cone $>1.3$-alternate) of the relative stability for the conformers of $\mathbf{2}$ is
different from 1. The mPWIPW91/6-31+G(d.p) calculated relative stabilities of the conformations of $\mathbf{2}$ in Table $\mathbf{2}$ suggest that the cone conformer is $4.23 \mathrm{kcal} / \mathrm{mol}$ more stable than 1.2 -altennate. 8.49 $\mathrm{kcal} / \mathrm{mol}$ more stable than partial-cone. and 13.48 $\mathrm{kcal} / \mathrm{mol}$ more stable than 1,3-altemate analogue, respectively.

Table 3 shows the total electronic, Gibbs free and relative energies. and dipole moments of the conformers of calix[6]arene (3) calculated by the $m \mathrm{P}$ WIPW9I calculations. During the optimization of 1.2.4-alternate conformation. this structure spontaneously changed to the most stable pinched cone. Therefore. the energy of the 1.2.4-alternate conformer is omitted in Tables 3 and 4 . The relative stabilities of $m$ PW1PW91/6-31+G(d.p) optimization results of $\mathbf{3}$ are in the following order: cone (pinched: most stable) > partial-cone > 1,2-alternate $\sim 1.2,3$-alternate $\sim$ cone (ninged $)>1,4$-alternate $\sim 1.3$-alternate $>1.3 .5$-altennate. The calculated

Table 4. mPWIPW91 Optimized Tolal and Relative Energies and Dipole Moment" of the Various Conionners" of 4

| mPW1PW91 | Total (a.u. $)^{a}$ cone (pinched) | $\backslash E(\mathrm{kcal} / \mathrm{mol}){ }^{\prime}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | cone (uinged) | pc | 12 a | 13a | 14 | 123 a | 135a |
| $16-31+\mathrm{G}(\mathrm{d} . \mathrm{p})(0 \mathrm{~K})^{1}$ | -3016.6188 | 12.94 | 15.20 | 7.86 | 21.48 | 13.32 | 19.10 | 20.11 |
| $16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})(0 \mathrm{~K})^{\text {c }}$ | -3016.5581 | 13.26 | 16.63 | 9.36 | 25.23 | 16.34 | 19.53 | 23.55 |
| Dipole Monnent ${ }^{\text {e }}$ | 1.98 | 2.77 | 4.69 | 1.64 | 391 | 0.48 | 3.48 | 4.66 |

 optimized strocture.
relative stabilities of the conformations of 3 in Table 3 suggest that the cone (pinched) conformer is $9.38 \mathrm{kcal} / \mathrm{mol}$ more stable than partial-cone. about $1.3 \mathrm{kcal} / \mathrm{mol}$ more stable than cone (uinged). 1.2-alternate and 1.2.3-alternate analogues. about $17 \mathrm{kcal} / \mathrm{mol}$ more stable than 1.3 -alternate and $1.4-$ alternate. and $20.48 \mathrm{kcal} / \mathrm{mol}$ more stable that $1.3 .5-$ alternate. respectively.

The $m P W I P W 91$ calculations from three different basis sets are compared. For the relative stabilities of four different conformer in the Tables 1-3, $\Delta \neq ゙ s$ calculated from $6-3 \mathrm{l}+\mathrm{G}(\mathrm{d} . \mathrm{p})$ basis set are smaller than the values obtained from the 6 $31 \mathrm{G}(\mathrm{d} . \mathrm{p})$ and $6-3 \mathrm{l} \mathrm{G}$ basis sets in following order: $6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})<6-31 \mathrm{G}(\mathrm{d} . \mathrm{p})<6-31 \mathrm{G}$. The higher level calculation shows less energy gap between the most stable cone conformer and the less stable analogues.

We also report the calculated results of the mPW 1 PW 91 calculations for the conformers of $p$ -fert-butylcalix[6]arene ( 4 ). Since the molecule 4 ( 156 atoms) is much bigger than the debuty lated calix[6]arene 3 ( 84 atoms). only mPWlPW91/ $6-31+G(d . p)$ single point calculation following the $m$ PW IPW $91 / 6-31 \mathrm{G}(\mathrm{d} . \mathrm{p})$ optimization of 4 was allowed with our computing resources. Table + shows the total and relative energies of the various conformers of 4 . The relative slabilities of the $m \mathrm{P}$ -WIPW91/6-31+G(d.p) calculation results of 4 are in the following order: cone (pinched) $>1,2$-alternate $>$ cone (vinged $) \sim 1.4$-alicmate $>$ parial-conc $>$ 1,2,3-alternate $>1.3,5$-alternate $\sim 1,3$-alternate. The $m \mathrm{PW} 1 \mathrm{PW} 91 / 6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$ calculated relative stabilities of the conformations of 4 in Table + suggest that the cone confonmer is $7.86 \mathrm{kcal} / \mathrm{mol}$
more stable than 1.2 -alternate, about $13.1 \mathrm{kcal} / \mathrm{mol}$ more stable than cone (winged) and I. + -alternate, $15.20 \mathrm{kcal} / \mathrm{mol}$ more stable than partial-cone 19.10 $\mathrm{kcal} / \mathrm{mol}$ more stable than 1.2.3-alternate conformers. respectively.

One of the important factors affecting the relative stabilities of the various confomers of the calix[n]arenes is the number and strength of the intramolecular hydrogen bonds. The good stability of 1.2-alternate conformer of p-tert-butylcalix[5]arene 2 among the less stable conformers can be explained by the four hydrogen bonds, whereas 2 (partial cone) has three and 2 (1,3-alternate) has one H-bonds. In Chart l. we have compared the $m \mathrm{PW} I \mathrm{PW} 91 / 6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$ calculated relative cnergies of the conformers of 2 and the number of H bonds to prove an excellent proportionality between two values.

(hart 1. Comparison of the $m \mathrm{PW} / \mathrm{PW} 91 / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ optimized relative stabilities of the confonmers of $p$ -tent-butylcalis $\lceil$ jarene 2 and the number of H -bonds. The relative energies of 2 is proportional to the value which is oblained by one If-bond energy ( $\sim 4.0$ keal/ $\mathrm{mol})^{\text {lt }}$ multiplied by the scaled number ( 5 (the number of H -bonds in the most stable cone conformer) - the number of H -bonds).

(hat 2. Comparison of the mPW IPW9]/6-3I+G(d.p) optimized relative stabilitics of the conformers of calix[6]arene 3 and the mmber of H -bonds. The relative energies of 3 is proportional to the value which is obtained by one H-bond energy ( $-4.0 \mathrm{kcal} / \mathrm{mol}$ ) multiplied by the scaled number ( 6 (the number of H -bonds in the most slable cone confomer) - the number of H -bonds).

Again. the good stability of 1.2.3-alternate conformer among the less stable confonmers of 3 can be explained by the four hydrogen bonds. whereas 3 (1.3-altemate) has three H-bonds and 3 (1,3,5alternate) has none. In Chart 2. we have compared the $m \mathrm{PW}$ I PW9 $1 / 6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$ calculated relative energies of the conformers of 2 and the number of H-bonds to prove the proportionality between two values.

Table 5 lists the mPW PW9]/6-31+G(d,p) calculated distances and angles of intramolecular hydrogen bonds of $\rho$-fert-butslealix|4|arene (1). In general, if $0 \ldots .0$ distance is less than 3.0 A . one interprets that the ( $\mathrm{O}-\mathrm{H} . . \mathrm{O}$ ) hydrogen bond is relatively strong for this intramolecular case. ${ }^{3.1}$ The

O .... O distances of $2.645 \sim 2.777$ A in Table 5 suggest that our calculated distances of 1 are in accord with the experimental distances (2.727 ~ 2.779 A in Table 8) of the intramolecular hydrogen bonds ( $0 . \ldots . .0$ ) of the $p$-tert-butstealix $|4|$ arene and calix|4|crown-5-cther oblained from Cambridge Structure Database. ${ }^{\text {b }}$

In order to compare our calculated H-bond distances of $t$-butylcalix|4 arene ( 2 ) with the values of the strong intramolecular hydrogen bonds of $t$-butylcalis(4|arene (1). we have tabulated the mPW1-PW91/6-31 $\cdot \mathrm{G}(\mathrm{d}, \mathrm{p})$ calculated H -bond distances of 2 in Table 6 . The average calculated distances (2.753~2.846 A in 7able 6) of the intramolecular hydrogen bonds of $t$-butylcalix|j|arene (2) are long-

Table 5. mPW IPW91/6-31+(d.p) Optimized Distances (A) and Angles of Hydrogen Bonds of 1

| Confonmer | H-bond | 1 | 2 | 3 | $+$ | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (cone) | O.... 0 | 2.664 | 2.640 | 2.6 .38 | 2.640 | 2.645 |
|  | H... O | 1.672 | 1.683 | 1.683 | 1.683 | 1.680 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.988 | 0.988 | 0.988 | 0.988 | 0.988 |
|  | Angle(') | $16+.6$ | 165.3 | 164.6 | 165.3 | 165.0 |
| 1 (partial-conc) | 0 | 2.709 | 2.702 |  |  | 2.706 |
|  | H. O | 1.787 | 1.73 |  |  | 1.759 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.976 | 0.981 |  |  | 0.979 |
|  | Angle(") | 156.3 | 170.7 |  |  | 163.5 |
| 1 (1.2-alteranate) | O..... O | 2.778 | 2.776 |  |  | 2.777 |
|  | H. O | 1.827 | 1.824 |  |  | 1.826 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.976 | 0.976 |  |  | 0.976 |
|  | Angle( ${ }^{\prime}$ ) | 164.0 | 164.5 |  |  | 164.3 |
| 1 (1.3-alteranatc) | nonc |  |  |  |  |  |

2(HJ9. नol 53...\%. 6

Table 6. mPW IPW91/6-31+(d,p) Optimized Distances (A) and Angles of Hydrogen Bonds of $\mathbf{2}$

| Confommer | H -lond | 1 | 2 | 3 | 4 | 5 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 (cone) | $0 \ldots . \mathrm{O}$ | 2.753 | 2.754 | 2.754 | 2.753 | 2.757 | 2.754 |
|  | H...O | 1.775 | 1.774 | 1.776 | 1.774 | 1.777 | 1.775 |
|  | O-H | 0.983 | 0.983 | 0.982 | 0.983 | 0.983 | 0.983 |
|  | Angle(") | 172.8 | 175.1 | 173.2 | 174.4 | 174.3 | 174.0 |
| 2 (partial-cone) | $0 \ldots \mathrm{O}$ | 2.753 | 2.769 | 2.882 |  |  | 2.801 |
|  | H...O | 1.795 | 1.798 | 1.908 |  |  | 1.834 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.974 | 0.979 | 0.976 |  |  | 0.976 |
|  | Angle( ${ }^{(0)}$ | 170.0 | 170.9 | 176.0 |  |  | 172.3 |
| 2 (1,2-alteranate) | $0 \ldots \mathrm{O}$ | 2.717 | 2.754 | 2.786 | 2.756 |  | 2.753 |
|  | H...O | 1.802 | 1.838 | 1.828 | 1.782 |  | 1.813 |
|  | O-H | 0.976 | 0.977 | 0.977 | 0.979 |  | 0.977 |
|  | Angle( $\left.{ }^{( }\right)$ | 154.5 | 154.7 | 165.9 | 173.3 |  | 162.1 |
| 2 (1,3-alteranate) | $0 \ldots .0$ | 2.846 |  |  |  |  | 2.846 |
|  | H...O | 1.878 |  |  |  |  | 1.878 |
|  | O H | 0.972 |  |  |  |  | 0.972 |
|  | Angle( ${ }^{( }$) | 173.2 |  |  |  |  | 173.2 |

Table 7. mPWIPW91 Optimized Distances ( $\AA$ ) and Angles ( ${ }^{\circ}$ ) of Intramolecular Hydrogen Bonds of 3

| Conformer | H-bond | 1 | 2 | 3 | 4 | 5 | 6 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (cone: pinched) | $0 \ldots . \mathrm{O}$ | 2.613 | 2.624 | 2.606 | 2.612 | 2.622 | 2.605 | 2.614 |
|  | H... O | 1.653 | 1.658 | 1.633 | 1.652 | 1.657 | 1.633 | 1.648 |
|  | O-H | 0.987 | 0.987 | 0.987 | 0.986 | 0.987 | 0.987 | 0.987 |
|  | Angle( ${ }^{\text {a }}$ ) | 163.4 | 164.9 | 167.7 | 163.5 | 164.6 | 167.4 | 165.3 |
| 3 (cone: winged) | $0 \ldots \mathrm{O}$ | 2.755 | 2.728 | 2.755 | 2.729 |  |  | 2.742 |
|  | H... | 1.836 | 1.812 | 1.836 | 1.813 |  |  | 1.824 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.975 | 0.975 | 0.975 | 0.975 |  |  | 0.975 |
|  | Angle( ${ }^{\text {a }}$ ) | 156.0 | 155.1 | 156.0 | 155.1 |  |  | 155.6 |
| 3 (partial-cone) | $0 \ldots \mathrm{O}$ | 2.793 | 2.665 | 2.665 | 2.690 |  |  | 2.703 |
|  | H... | 1.852 | 1.701 | 1.687 | 1.709 |  |  | 1.737 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.976 | 0.981 | 0.984 | 0.982 |  |  | 0.981 |
|  | Angle(") | 160.9 | 166.6 | 171.7 | 176.2 |  |  | 168.9 |
| 3 (1,2-alteranate) | $0 \ldots \mathrm{O}$ | 2.689 | 2.645 | 2.726 |  |  |  | 2.687 |
|  | H... | 1.729 | 1.686 | 1.764 |  |  |  | 1.726 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.976 | 0.980 | 0.976 |  |  |  | 0.977 |
|  | Angle( ${ }^{\text {a }}$ ) | 167.2 | 165.3 | 167.9 |  |  |  | 166.8 |
| 3 (1,3-alteranate) |  | 2.690 | 2.738 |  |  |  |  | 2.714 |
|  | $\mathrm{H} \ldots \mathrm{O}$ | $1.741$ | $1.777$ |  |  |  |  | $1.759$ |
|  | $\mathrm{O} \mathrm{H}$ | $0.978$ | $0.976$ |  |  |  |  | 0.977 |
|  | Angle( ${ }^{(1)}$ | 162.8 | 167.9 |  |  |  |  | 165.4 |
| 3 (1,4-alteranate) | $0 \ldots \mathrm{O}$ | 2.717 | 2.736 |  |  |  |  | 2.727 |
|  | H... O | 1.748 | 1.775 |  |  |  |  | 1.762 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.979 | 0.977 |  |  |  |  | 0.978 |
|  | Angle( ${ }^{(8)}$ | 169.7 | 167.0 |  |  |  |  | 168.4 |
| 3 (1,2,3-alteranate) |  | 2.710 | 2.830 | $2.830$ |  |  |  | 2.790 |
|  | H... O | 1.741 | 1.859 | 1.892 |  |  |  | 1.831 |
|  | $\mathrm{O}-\mathrm{H}$ | 0.978 | 0.976 | 0.973 |  |  |  | 0.976 |
|  | Angle( ${ }^{\text {a }}$ ) | 170.3 | 172.6 | 160.9 |  |  |  | 167.9 |

er than the values ( $2.6+5 \sim 2.777 \AA$ in Table 5) of p-tert-butylcalix[4]arene (1). FTIR studies already confirmed the intramolecular character of the H bonding and showed that it is strongest for the cyclic tetramer (1) and weakest for the cyclic pentamer (2). ${ }^{3.9}$

Table 7 lists the $m$ PW1PW $91 / 6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$ optimized distances and angles of intramolecular hydrogen bonds of 3 . The O....O distances of $2.61+\sim 2.790 \AA$ in Table 7 suggest that these calculated values in the calix[6]arene (3) display strong hydrogen bonds. The calculated O....O

Table 8. Experimental Distances( O .....O) of Intramolecular Hydrogen Bonds of the Cone Conformers of Calix[ $n$ ]arenes

| Molecule ( CSD entry $^{31}$ | Average (A) |
| :---: | :---: |
| p-tert-Buty lcalix[4]arene 1 (XAHMOI) ${ }^{35}$ | 2.779 |
| p-fert-Butylcalix[5]arene 2 (VETXUO) ${ }^{36}$ | 2.894 |
| Calis[ 5 ]arene (UKAGIW) ${ }^{\text {? }}$ | 2.764 |
| Calix[ ${ }^{\text {j }}$ arene (VETYAV) ${ }^{36}$ | 2.780 |
| Calix[6]arene 3 (NOBLEV) ${ }^{\text {3/ }}$ | 2.585 |
| $p$-fert-Butylcalix[6]arene 4 (KENBUA) ${ }^{\text {sth }}$ | 2.597 |
| Calix[4]crown-5-ether (VERLUA) ${ }^{38}$ | 2.727 |

distances ( $2.687 \sim 2.790 \AA$ ) of the less stable conformations of $\mathbf{3}$ are $0.07 \sim 0.15 \AA$ longer than the value ( $2.61+\mathrm{A}$ ) of the most stable cone conformer.

Since the $m$ PWIPW91/6-31+G(d,p) optimization of the bigger $t$-butylcalix[ 6$]$ arene ( 4 ) was not possible due to our limited computational resources, the distances and angles of the intramolecular hydrogen bonds of 4 are not listed in this publication. The average calculated $\mathrm{O} \ldots . \mathrm{O}$ distances (2.614 $\AA$ of calix[6]arene (3) in Table 7 and $2.640 \AA$ of $t$-butylcalis[6]arene (4) from the B3LYP optimization in reference 17) of the intramolecular hydrogen bonds of the cone conformers are slightly longer than the experimental cry stal structure values (2.585 and 2.597 A , respectively) in Table 8.

We have compared the $m$ PWIPW91 optimized hydrogen-bond distances of $\mathbf{1 , 2}$ and $\mathbf{3}$ with the values obtained from previous B3LYP calculation method. Table 9 shows the mPW1PW91 optinuzed average $\mathrm{O} \ldots . \mathrm{O}$ distances ( $2.645 \sim 2.777 \mathrm{~A}$ ) in 1 are about $0.015 \AA$ shorter than the values ( $2.650 \sim$ 2.796 A) of B3LYP method. The mPWIPW91 optimized average O .....O distances ( $2.754 \sim 2.846$ $\AA$ ) in $\mathbf{2}$ are also shorter than the values ( 2.765 ~

Table 9.mPWIPW9IOptimized Average O...O Distances $(\AA)$ of Intramolecular ( $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ ) Hydrogen Bonds of 1,2 and 3

| Conformer | $m$ PW1PW91/6-31+(d, p) | B3LYP/6-31+(d,p) ${ }^{\text {a }}$ | Difference ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| 1 (cone) | 2.645 | 2.650 | -0.005 |
| 1 (partial-cone) | 2.706 | 2.718 | -0.012 |
| 1 (1,2-alteranate) | 2.777 | 2.796 | -0.019 |
| 2 (cone) | 2.754 | 2.765 | -0.011 |
| 2 (partial-cone) | 2.801 | 2.810 | -0.009 |
| 2 (1,2-alteranate) | 2.753 | 2.768 | -0.015 |
| 2 (1,3-alteranate) | 2.846 | 2.861 | -0.015 |
| 3 (cone: pinched) | 2.614 | 2.640 | -0.026 |
| 3 (cone: winged) | 2.742 | 2.762 | -0.020 |
| 3 (partial-cone) | 2.703 | 2.712 | -0.009 |
| 3 (1,2-alteranate) | 2.687 | 2.760 | -0.073 |
| 3 (1,3-alteranate) | 2.714 | 2.782 | -0.068 |
| 3 (1,4-alteranate) | 2.727 | 2.748 | -0.021 |
| 3 (1,2,3-alteranate) | 2.790 | 2.795 | -0.005 |
| Average | 2.733 | 2.755 | -0.022 |

${ }^{2}$ B3L YP calculated $O \ldots O$ distances are obtained from references 16 and 17 . ${ }^{\text {b }}$ Difference: $n \mathrm{PW}$ PW91 optimized distance minus B3LYP calculated value.

Table 10. Comparison between mPW1PW91 ${ }^{\text {a }}$ and B3LYP ${ }^{b}$ methods for the Calculated Relative Energies of the conformers of 1-4

| Confommer | $m$ PW 1 PW9 $1 / 6-31+(\mathrm{d} p$ ) | B3LYP/6-31+(d.p) | Difference ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: |
| 1 (cone) | 0.00 | 0.00 | 0.00 |
| 1 (partial-cone) | 7.53 | 8.45 | -0.91 |
| 1 (1,2-alteranate) | 10.85 | 11.59 | -0.74 |
| 1 (1,3-alteranate) | 12.25 | 14.21 | -1.96 |
| 2 (cone) | 0.00 | 0.00 | 0.00 |
| 2 (partial-cone) | 8.49 | 9.70 | -1.22 |
| 2 (1,2-alteranate) | 4.23 | 5.99 | -0.87 |
| 2 (1,3-alteranate) | 13.48 | 15.15 | -1.67 |
| 3 (cone: pinched) | 0.00 | 0.00 | 0.00 |
| 3 (cone: winged) | 13.05 | 13.80 | -0.75 |
| 3 (partial-cone) | 9.38 | 10.37 | -0.99 |
| 3 (1,2-alteranate) | 12.89 | 13.87 | -0.98 |
| 3 (1,3-alteranate) | 17.22 | 18.55 | -1.33 |
| 3 (1,4-alteranate) | 17.03 | 17.81 | -0.77 |
| 3 (1,2,3-alteranate) | 12.96 | 13.59 | -0.62 |
| 3 (1,3,5-alteranate) | 20.48 | 23.44 | -2.96 |
| 4 (cone: pinched) | 0.00 | 0.00 | 0.00 |
| 4 (cone: winged) | 12.94 | 14.48 | -1.54 |
| 4 (partial-cone) | 15.20 | 18.03 | -2.83 |
| 4 (1,2-alteranate) | 7.86 | 10.72 | -2.86 |
| 4 (1,3-alteranate) | 21.48 | 23.58 | -2.11 |
| 4 (1,4-alteranate) | 13.32 | 13.77 | -0.44 |
| ( (1,2,3-alteranate) | 19.10 | 20.99 | -1.89 |
| +(1,3,5-alteranate) | 20.11 | 27.12 | -7.01 |

${ }^{2}$ mPW 1PW $916-31+(d . p)$ calculated relative energies are copied from Tobles $1-4 .{ }^{\text {h }} \mathrm{B} 3 \mathrm{LYP}$ calculated relative energies are obtained from references 16 and 17 . ${ }^{\text {T}}$ Difference: $m$ PW 1 PW91 optimized relative energy minus B3L.YP calculated value.
$2.861 \AA$ ) of B3LYP method. The $m$ PWIPW91 optimized average O ....O distances $(2.61+\sim 2.790$ $\AA$ ) in $\mathbf{3}$ are about $0.022 \AA$ shorter than the values ( $2.640 \sim 2.795 \AA$ ) of B3LYP method. Those $m$ PWIPW91 optimized distances in $\mathbf{3}$ are closer to the experimental results ( 2.585 A in Table 8).

In Table 10. we have compared the relative energies of mPW1PW91 calculations of the various conformers of $1-4$ with the values obtained from previous B3LYP method. The differences in Table 10 tell us that the relative energies obtained from the mPWIPW91 method always give smaller gap than the B3LYP calculated values. The range is $-0.44 \sim-2.96 \mathrm{kcal} / \mathrm{mol}$ (average $-1.2 \mathrm{kcal} / \mathrm{mol}$ ) except one case $(-7.01 \mathrm{kcal} / \mathrm{mol})$ of 4 ( 1.3 .5 -alternate).

Since the $m$ PW1PW91 optimized low-resolution figures of the various conformers of $1-+$ are very
similar to the structures obtained from previously' published B3LYP calculations. ${ }^{16.17}$ we report the structures of the most stable cone conformers for the respective molecules of 1-4 in Fig. 1. The cone conformer ( $\mathbf{1}$ (cone): Fig. 1(a)) having four hy drogen bonds and 2(cone) (Fig. l(c)) having five hydrogen bonds are the most stable, as shown in experimental studies. ${ }^{2 / 18.19}$ The pinched cone conformations of calix[6]arene (Figures $1(\mathrm{e})$ and $1(\mathrm{~g})$ ) having six lydrogen bonds are the most stable conformers of 3 and 4. respectively.

## CONCLUSION

The relative stabilities of the conformers of p-tert-butylcalix[4]arene (1). p-tert-butylcalix[5]arene (2), calix[6]arene (3) and p-tert-butylcalix[6]arene (t) were calculated by using mPWIPW91/

(a) 1_cone (bottom view; PosMol)

(c) 2_cone (bottom view; PosMol)

(e) 3_cone (pinched; bottom view: PosMol)

(g) 4_cone (pinched; PosMol)

(b) 1_cone (side view; Chem3D)

(c) 2_cone (side view; Chem3D)

(f) 3_cone (pinched; side view; Chem3D)

(h) 4_cone (pinched; Chem3D)

Fig. 1. mPW 1PW91/6-31+G(d,p) optimized molecular structures of the cone conformers of 1-3. (a) Bottom view of 1 (p-tert-butylcalix[4]arene) by PosMol ${ }^{\text {41) }}$ with hydrogen bonds shown, (b) side view of 1 (p-tert-butylcalix[4]arene) by Chem3D ${ }^{41}$ without hydrogen atoms, (c) bottom view of 2 (p-tert-butylcalix[5]arene) by PosMol, (d) side view of 2 (p-tert-butylcalix[5]arene), (e) bottom view of $\mathbf{3}$ pinched cone (calix[6]arene) by PosMol, (f) side view of $\mathbf{3}$ pinched cone (calix[6]arente) by Chem3D. (g) mPW1PW91/6-31G(d.p) optimized molecular structures of bottom view of 4 pinched cone ( $p$-tert-butylcalix[6]arene) by PosMol and (h) side view of 4 pinched cone ( $p$-tert-butylcalix[6]arene) by Chem3D. Atoms that are within a certain distance (the bond proximate distance) from one another were automatically marked as bonded. ${ }^{40}$
$6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$ method. The relative stability of four conformers of $\mathbf{1}$ is in the following order: cone (most stable) > partial-cone > 1,2 -alternate $>1,3$ alternate. The relative stability of the various conformers of 2 is in the following order: cone (most stable) $>1.2$-altemate > partial-cone > 1.3 -alternate. The relative stability of the conformers of $\mathbf{3}$ is in the following order: cone (pinched: most stable) > partial-cone $>$ cone (winged) $\sim 1.2$-alternate $\sim$ 1.2.3-alternate $>1.4$-alternate $>1.3$-alternate $>$ 1,3.5-alternate.

The structures of different conformers of + were optimized by using the mPWIPW91/6-31G(d.p) method followed by single point calculation of $m$ PWIPW $91 / 6-31+\mathrm{G}(\mathrm{d} . \mathrm{p})$. The relative stability of the conformers of 4 is in the following order: cone (pinched) $>1.2$-alternate $>$ cone (winged) $>$ 1,4-alternate $\sim$ partial-cone $>1.2,3$-altemate $>$ 1,3.5-alternate > 1.3-alternate.

The primary factor affecting the relative stabilities of the various conformers of the 1-4 are the number and strength of the intramolecular hy drogen bonds. Each hydrogen bond contributes about $+\mathrm{kcal} / \mathrm{mol}$ for the stability of the conformers of these calix[n]arenes.

The $m$ PW1PW91 optimized average H -bond distances $(2.645 \sim 2.846 \mathrm{~A}$ ) in $1-4$ are slightly shorter than the values $(2.640 \sim 2.861 \mathrm{~A})$ calculated from B3LYP method.

Acknowledgments. This work was supported by the Young Investigator Research Program of Chung-Ang University 2007 year. The large portions of the computations were carried out with use of the computer facilities at the Research Center for Computational Science of the Okazaki National Research Institutes in Japan.

## REFERENCES

1. (a) Mandolini, L.; Ungaro, R. (Eds.), Calixarenes in Action: World Scientific Publishers Co.: Singapore, 2007. (b) Gutsche, C. D. Calixarenes Revisited, Royal Society of Chemistry: Cambridge, 1998. (c) Vicens, J.; Astari, Z.; Harrowfield, T. M. (Eds.), Calixarenes
$50^{\text {th }}$ Annversan: Commenorative Iolune; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. (d) Gutsche, C. D. Calixarenes' Royal Society of Chemistry: Cambridge, 1989. (e) Vicens, T;; Böhmer, V. (Eds.), Calixarenes: A Versatile Class of Macrocyclic Componds, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
2. (a) Gutsche, C. D. Top. Curr: Chem. 1984, 123, 1. (b) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161. (c) Andreetti, G. D.; Ungaro, R.; Pochini, A.J. Chem. Soc., Chem. Comm. 1979, 1005. (c) Grootenhuis, P. D. I.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.: van Hunmel, G. I.; Ugozzoli, F:; Andreetti, G. D. J.Am. Chem. Soc. 1990, 112, 4165.
3. (a) Gutsche, C. D.; Iqbal, M. Ogg. Sin. 1990, 68, 234. (b) Groonen, L. C; $;$ van Loon, T.-D.; Verboom, W;; Harkema, S.; Casnati, A;- Ungaro, R.; Pochini, A; Ugozzoli, F.: Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385.
4. Choe, T.-I. Lee, S. H.; Oh, D.-S. Chang, S.-K.; Nanbu, S. Bull. Korean Chem. Soc. 2004, 25, 190.
5. (a) Harada, T;; Rudziriski J. M.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1992, 2, 2109 . (b) Harada, T; Rudzinski, T. M.; Shinkai, S. Tetrahedron 1993, 49 , 5941 . (c) Harada, T;; Ohseto F.: Shinkai, S. Tetrahedron 1994, 50, 13:377. (d) van Hoon, W. P;; Morshuis, M. G. H.; van Veggel, F. C. T. M.: Reinhoudt, D. N. J. Phys. Chem. 1998, 102, 1130 . (e) wan Hoom, W. P.; Briels, W. J.; van Duynthoven, J. P. M.; van Veggel, F. C. J. M.; Reirhoudt, D. N. J. Org. Chem. 1998, 63, 1299 . (f) Blist, T.; Detellier, C. J.Am. Chem. Soc. 1995, 117, 8536 . (g) Fukazawa, Y.; Yoshimura, K.: Sasaki, S: Yamazaki, M.: Okajima, T. Tetrahedron 1996, 52, 2301.
6. (a) Bernardino, R. I. ; Costa Cabral, B. J. J. Phus. Chem. A 1999, 103, 9080. (b) Bemardino, R. J;; Costa Cabral, B. T;; Pereira, J. L. C. J. Mol. Struc. (THEOCHEM) 1998, 23, 455.
7. (a) Kim, K. S.; Sul, S. B.: Kim, I. C.; Hong, B. H.; Lee, E. C.: Yun, S.: Tarakeshwar, P.; Lee, J. Y.; Kim, Y.: Ihm, H.; Kim, H. G.; Lee, I. W.; Kim, J. K.: Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.H. J. Am, Chem. Soc: 2002, 124, 14268. (b) Riehn, C; Reimann, B.; Buchhold, K.; Barth, H.-D.; Vaupel, S.: Brutschy, B.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2001, 115, 10045.
8. Choe, J.-I.; Lee, S. H.: Oh, D.-S. Bull. KoreanChem. Soc. 2004, 25, 55.
9. (a) Conuzzi, M.; Andreetti, G. D.; Bocchi, A.; Ungaro, R. J. Chem. Soc., Perkin Trons. 1982, 2, 1133. (b)

Barrett, G.; McKervev, M. A.; Malone, T. F.; Walker, A.; Amaud-Nell, F.: Guema, L.; Schwing-Weill, M.-J. J. Chent. Soc. Perkin Trums. 2 1993, 1475 (c) Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. J. Amer. Chem. Soc. 1995, 117, 586. (d) Gordon, J. L. M.; Böhmer, V.: Vogt, W. Tetrahedron Lett. 1995, 36, 2445. (e) Pappalardo, S.: Parisi, M. F.J. Org. Chem. 1996, 61, 8724. (f) Amaud-Neu, F; Fuangswasdi, S; Notti A.; Pappalardo, S.; Parisi, M. Angew. Chen. Int. Ed. 1998, 37, 112. (g) Giannetto, M. Mori, G.; Notti, A.; Pappalardo, S.; Paris, M. F. Anal. Chem. 1998, 70, 4631. (h) Salvo, G. D.: Gattuso, G.: Notti, A.: Parisi, M.: Pappalardo, S.J. Org. Chem. 2002, 67, 684.
10. (a) Ninagawa, A:- Matsuda, H.; Afakromol. Chem. Rapid Conmm. 1982, 3, 65. (b) Markowitz, M. A.; Janout, V.; Castner, D. G.; Regen, S. L. J. Amer: Chem. Soc. 1989, 111, 8192. (c) Souley, B.: Astari, Z.: Vicens, T. Polish J. Chem. 1992, 66, 959. (d) Kămerer, H.: Happel, G.; Mathiasch, B. Makromol. Chem. 1981, 182, 1685 (e) Souley, B.; Asfari, Z.: Vicens, T. Polish J. Chem. 1993, 67, 763.
11. van Hoom, W. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 7180.
12. Atwood, I. L.; Barbour, L. J.: Raston, C. L.: Sudria, I. B. N. Angew. Chem., Int. Ed. 1998, 37, 981.
13. Andretti, G. D.: Ugozzoli, F.: Casnati, A.; Ghidini, E.: Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989. H9, 47.
14. Halit, M.; Oehler, D.; Perrin, M.; Thozet, A.; Perrin, R.; Vicens, J.; Bourakhoudar, M. J. Inchision Phenom. 1988, 6, 613 .
15. (a) Gutsche, C. D.; Bauer, J. J. Am. Chem. Soc. 1985, 107, 6052. (b) Lutz, B. T. G.: Astarloa, G.: van der Maas, T. H.; Janssen, R. G.: Verboom, W.: Reinhoudt, D. N. Iib. Spectrosc. 1995, 10, 29.
16. Kim, K.; Park, S. J.; Choe, T.-I. Bull. Korean Chem. Soc. 2008, 29, 1893.
17. Kim, K.; Choe, J.-I. Bull. Korean Chem. Soc. 2009, 30, 837 .
18. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648 . (b) Lee, C.; Yang, W.; Parr, R. G. Phy's. Rev: B 1988, 37, 785.
19. Stephens, P. T.: Devin, F. T.; Chabalowski, C. F.; Frisch, M. T. J. Phys. Chem. 1994, 98, 11623.
20. Feller, D. J. Phys. Chem. A 1999, 103, 7558.
21. van Mourik, T. Chem. Phys. 2004, 304, 317.
22. Tsuzuki, S.: Luthi, H. P. J. Chem. Phys. 2001, 11t, 3949.
23. Zhao, Y.; Trullar, D. G. J. Phys. Chent . $2 \mathbf{2 0 0 4}, 108$, 6908.
24. Zhao, Y.; Truhlar, D. G. J. Chen. Theory Comput. $2005,1,415$.
25. Kollman1, P. A. In Chemical Applications of Atomic and Mfolechlar Electrostatic Potentials; Politzer, P. A., Truhlar, D. G., Eds.: Plenum: New York, 1981: p 243.
26. Morokuma, K.; Kitaura, K. In Chemical.Applications of Atonic and Molechlar Electrostatic Potentials: Politzer, P. A., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 215.
27. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046.
28. Adamo, C.; Barone, V. J. Chem. Phus 1998, 108, 664.
29. Lynch, B. J.; Fast, P. L.; Harris, M.; Trullar, D. G. $J$. Phys. Chem. A 2000, 104, 4811.
30. HyperChem Release 7.5, Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
31. (a) Cambridge Structme Database, Cambridge Crystallographic Data Centre, Cambridge, U. K. 2008. (b) Atwood, J. L.; Barbour, L. J.: Heaven, M. W.: Raston, C. L. Angew. Chen. 1998, 37, 981 . (c) Andretti, G. D.; Ugozzoli, F.; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47.
32. Choe, J.-I.: Kim, K: Chang, S.-K. Bull. Kotean Chem. Soc. 2000, 21, 465.
33. Frisch, M. T.: Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Tr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, (. A.: Nakatsulji, H.: Hada, M.; Ehara, M.: Toyota, K.: Fukuda, R.: Hasegawa, T.; Ishida, M;; Nakajima, T.: Honda, Y:: Kitao, O.: Nakai, H.: Klene, M.: Li, X.; Knos, J. E.: Hratchian, H. P.: Cross, I. B.: Bakken, V.; Adamo, C.; Jaramillo, T.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.: Voth, G. A.: Salvador, P.; Dannenberg, I. T.; Zakrzewski, V. G.: Dapprich S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.: Rabuck, A. D.: Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liasherko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.: Tohnson, B.: Chen, W.: Wong, M. W.: Gonzalez, C.: Pople, J. A. Gaussion 03, Revision D.01, Gaussiant, Inc., Wallingford CT, 2004.
34. (a) Teffrey, G. A. An Introduction to Hydrogen Bonding: Oxford Univ. Press, Cambridge, 1997. (b) Pak,
C.: Lee, H. M.; Kim, J. C.; Kim, D.; Kim, K. S. Strict. Chem. 2005, 16, 187-202.
35. Brouwer, E. B.: Udachin, K. A.; Enright, G. D.; Ripmeester, J. A. Chen.Conmmm. 2000, 1905.
36. Clark, T. E.: Makha, M.; Raston, C. L.: Sobolev, A. N.: Crust. Growth Des. 2006, 6, 2783.
37. Atwood, J. L.; Barbour, L. T.: Heaven, M. W.: Raston, C. L. Angew: Chem., 2003, 42, 3254.
38. Agnihotri, P;; Suresh, E.; Paul, P.; Ghosh, P. K. Eut: J. Inorg. Chem. 2006, 3369.
39. Keller, S. W.; Schuster G. M.; Tobiason, F. L. Potym, Mfater Sci. Eng., 1987, 57, 906.
40. Lee, S. I.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061.
41. Chem 3 D, Fersion 7.0, Cambridge Soft, Cambridge, MA, U. S. A., 2001.

