Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.1.16

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets  

Kim, Sung-Hyun (Department of Chemistry, Hannam University)
Kim, Baek-Jin (Department of Chemistry, Hannam University)
Shin, Chang-Ho (KT&G Central Research Institute)
Kim, Seung-Joon (Department of Chemistry, Hannam University)
Publication Information
Abstract
The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.
Keywords
BN sheet; AlN sheet; DFT; Atmospheric harmful gases (COx, NOx, SOx);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.   DOI
2 Henwood, D.; Carey, J. D. Phys. Rev. B 2007, 75, 245413.   DOI
3 Kang, J.; Kim, H.; Kim, K. S.; Lee, S.-K.; Bae, S.; Ahn, J.-H.; Kim, Y.-J.; Choi, J.-B.; Hong, B. H. Nano Lett. 2011, 11, 5154.   DOI
4 Choi, H.; Choi, J. S.; Kim, J.-S.; Choe, J.-H.; Chung, K. H.; Shin, J.-W.; Kim, J. T.; Youn, D.-H.; Kim, K.-C.; Lee, J.-I.; Choi, S.-Y.; Kim, P.; Choi, C.-G.; Yu, Y.-J. Small 2014, 10, 3685.   DOI
5 Pattanayak, J.; Kar, T.; Scheiner, S. J. Phys. Chem. A 2002, 106, 2970.   DOI
6 Davis, R. F. Proc. IEEE 1991, 79, 702.   DOI
7 Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.   DOI
8 Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966.   DOI
9 Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Science 2004, 303, 217.   DOI
10 Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451.   DOI
11 Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.   DOI
12 Chigo Anota, E.; Hernandez Cocoletzi, H.; Rubio Rosas, E. Eur. Phys. J. D 2011, 63, 271.   DOI
13 Jiao, Y.; Du, A.; Zhu, Z.; Rudolph, V.; Lu, G. Q.; Smith, S. C. Catal. Today 2011, 175, 271.   DOI
14 Galicia Hernandez, J.; Cocoletzi, G.; Anota, E. J. Mol. Model. 2012, 18, 137.   DOI
15 Liu, H.; Turner, C. H. J. Comput. Chem. 2014, 35, 1058.   DOI
16 Najafi, M. Appl. Surf. Sci. 2016, 384, 380.   DOI
17 Sakai, T.; Iwata, M. J. Cer. Soc. Jap. 1974, 82, 41.
18 Areshkin, D. A.; Shenderova, O. A.; Adiga, S. P.; Brenner, D. W. Diamond Relat. Mater. 2004, 13, 1826.   DOI
19 Zhao, M.; Xia, Y.; Zhang, D.; Mei, L. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 2354151.
20 Zhang, X.; Liu, Z.; Hark, S. Solid State Commun. 2007, 143, 317.   DOI
21 Yafei, L.; Zhen, Z.; Panwen, S.; Zhang, S. B.; Zhongfang, C. Nanotechnology 2009, 20, 215701.   DOI
22 Jiao, Y.; Du, A.; Zhu, Z.; Rudolph, V.; Smith, S. C. J. Mater. Chem 2010, 20, 10426.   DOI
23 Ahmadi, A.; Hadipour, N. L.; Kamfiroozi, M.; Bagheri, Z. Sens. Actuators, B 2012, 161, 1025.   DOI
24 Beheshtian, J.; Baei, M. T.; Bagheri, Z.; Peyghan, A. A. Microelectronics J 2012, 43, 452.   DOI
25 Rastegar, S. F.; Peyghan, A. A.; Ghenaatian, H. R.; Hadipour, N. L. Appl. Surf. Sci. 2013, 274, 217.   DOI
26 (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI
27 (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
28 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.   DOI
29 Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.   DOI
30 Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J. Y.; Kim, K. S.; Ha, T.; Jang, J. H.; Lee, J. G.; Lee, H. J. Chem. Phys. 1999, 111, 5838.   DOI
31 Chu, T. L.; Kelm Jr, R. W. J. Electrochem. Soc. 1975, 122, 995.   DOI
32 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.