• Title/Summary/Keyword: G.H.G

Search Result 25,140, Processing Time 0.055 seconds

A Study on the Component of Russian Comfrey (Russian Comfrey의 성분조성에 관한 연구)

  • 이영근
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.2
    • /
    • pp.11-17
    • /
    • 1995
  • Proximate compositions pH, contents of Vitamins in Russian comfrey(RC) were investigated to furnish basic research for the utilization of health foods or processed foods. Analysis has been made of the proximate composition of comfrey leaf and root of RC, and pH, vitamin content of RC. The moisture, crude protein, crude fat and crude ash of RC were 89.78%, 3.23g/100g, 0.40g/100g in leaf and 69.66%, 0.44g/100g, 0.21g/100g, 8.24g/100g in root, respectively. pH of RC was 7.33. The $\beta$-carotene content in RC was 1097.158$\mu\textrm{g}$/100g. Vitamin B content in RC was 0.01mg/100g. Vitamin B content in RC was 0.29mg/100g. Niacin content in RC was 1.2mg/100g. Vitamin C content in RC was 26.4mg/100g.

  • PDF

SOME RESULTS ON STARLIKE TREES AND SUNLIKE GRAPHS

  • Mirko, Lepovic
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.109-123
    • /
    • 2003
  • A tree is called starlike if it has exactly one vertex of degree greate. than two. In [4] it was proved that two starlike trees G and H are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, let G be a simple graph of order n with vertex set V(G) : {1,2, …, n} and let H = {$H_1$, $H_2$, …, $H_{n}$} be a family of rooted graphs. According to [2], the rooted product G(H) is the graph obtained by identifying the root of $H_{i}$ with the i-th vertex of G. In particular, if H is the family of the paths $P_k_1,P_k_2,...P_k_2$ with the rooted vertices of degree one, in this paper the corresponding graph G(H) is called the sunlike graph and is denoted by G($k_1,k_2,...k_n$). For any $(x_1,x_2,...,x_n)\;\in\;{I_*}^n$, where $I_{*}$ = : {0,1}, let G$(x_1,x_2,...,x_n)$ be the subgraph of G which is obtained by deleting the vertices $i_1,i_2,...i_j\;\in\;V(G)\;(O\leq j\leq n)$, provided that $x_i_1=x_i_2=...=x_i_j=o.\;Let \;G[x_1,x_2,...x_n]$ be characteristic polynomial of G$(x_1,x_2,...,x_n)$, understanding that G[0,0,...,0] $\equiv$1. We prove that $G[k_1,k_2,...,k_n]-\sum_{x\in In}[{\prod_{\imath=1}}^n\;P_k_i+x_i-2(\lambda)](-1)...G[x_1,x_2,...,X_n]$ where x=($x_1,x_2,...,x_n$);G[$k_1,k_2,...,k_n$] and $P_n(\lambda)$ denote the characteristic polynomial of G($k_1,k_2,...,k_n$) and $P_n$, respectively. Besides, if G is a graph with $\lambda_1(G)\;\geq1$ we show that $\lambda_1(G)\;\leq\;\lambda_1(G(k_1,k_2,...,k_n))<\lambda_1(G)_{\lambda_1}^{-1}(G}$ for all positive integers $k_1,k_2,...,k_n$, where $\lambda_1$ denotes the largest eigenvalue.

Influence of Microcrack on Brazilian Tensile Strength of Jurassic Granite in Hapcheon (미세균열이 합천지역 쥬라기 화강암의 압열인장강도에 미치는 영향)

  • Park, Deok-Won;Kim, Kyeong-Su
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.41-56
    • /
    • 2021
  • The characteristics of the six rock cleavages(R1~H2) in Jurassic Hapcheon granite were analyzed using the distribution of ① microcrack lengths(N=230), ② microcrack spacings(N=150) and ③ Brazilian tensile strengths(N=30). The 18 cumulative graphs for these three factors measured in the directions parallel to the six rock cleavages were mutually contrasted. The main results of the analysis are summarized as follows. First, the frequency ratio(%) of Brazilian tensile strength values(kg/㎠) divided into nine class intervals increases in the order of 60~70(3.3) < 140~150(6.7) < 100~110·110~120(10.0) < 90~100(13.3) < 80~90(16.7) < 120~130·130~140(20.0). The distribution curve of strength according to the frequency of each class interval shows a bimodal distribution. Second, the graphs for the length, spacing and tensile strength were arranged in the order of H2 < H1 < G2 < G1 < R2 < R1. Exponent difference(λS-λL, Δλ) between the two graphs for the spacing and length increases in the order of H2(-1.59) < H1(-0.02) < G2(0.25) < G1(0.63) < R2(1.59) < R1(1.96)(2 < 1). From the related chart, the six graphs for the tensile strength move gradually to the left direction with the increase of the above exponent difference. The negative slope(a) of the graphs for the tensile strength, suggesting a degree of uniformity of the texture, increases in the order of H((H1+H2)/2, 0.116) < G((G1+G2)/2, 0.125) < R((R1+R2)/2, 0.191). Third, the order of arrangement between the two graphs for the two directions that make up each rock cleavage(R1·R2(R), G1·G2(G), H1·H2(H)) were compared. The order of arrangement of the two graphs for the length and spacing is reverse order with each other. The two graphs for the spacing and tensile strength is mutually consistent in the order of arrangement. The exponent differences(ΔλL and ΔλS) for the length and spacing increase in the order of rift(R, -0.08) < grain(G, 0.14) < hardway(H, 0.75) and hardway(H, 0.16) < grain(G, 0.23) < rift(R, 0.45), respectively. Fourth, the general chart for the six graphs showing the distribution characteristics of the microcrack lengths, microcrack spacings and Brazilian tensile strengths were made. According to the range of length, the six graphs show orders of G2 < H2 < H1 < R2 < G1 < R1(< 7 mm) and G2 < H1 < H2 < R2 < G1 < R1(≦2.38 mm). The six graphs for the spacing intersect each other by forming a bottleneck near the point corresponding to the cumulative frequency of 12 and the spacing of 0.53 mm. Fifth, the six values of each parameter representing the six rock cleavages were arranged in the order of increasing and decreasing. Among the 8 parameters related to the length, the total length(Lt) and the graph(≦2.38 mm) are mutually congruent in order of arrangement. Among the 7 parameters related to the spacing, the frequency of spacing(N), the mean spacing(Sm) and the graph (≦5 mm) are mutually consistent in order of arrangement. In terms of order of arrangement, the values of the above three parameters for the spacing are consistent with the maximum tensile strengths belonging to group E. As shown in Table 8, the order of arrangement of these parameter values is useful for prior recognition of the six rock cleavages and the three quarrying planes.

On the Metric Dimension of Corona Product of a Graph with K1

  • Mohsen Jannesari
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the k-vector r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum cardinality is a basis of G. The corona product, G ⊙ H of graphs G and H is obtained by taking one copy of G and n(G) copies of H, and by joining each vertex of the ith copy of H to the ith vertex of G. In this paper, we obtain bounds for dim(G ⊙ K1), characterize all graphs G with dim(G ⊙ K1) = dim(G), and prove that dim(G ⊙ K1) = n - 1 if and only if G is the complete graph Kn or the star graph K1,n-1.

Surface Reactions of Atomic Hydrogen with Ge(100) in Comparison with Si(100)

  • Jo, Sam Keun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.174-178
    • /
    • 2017
  • The reactions of thermal hydrogen atoms H(g) with the Ge(100) surface were examined with temperature-programmed desorption (TPD) mass spectrometry. Concomitant $H_2$ and $CH_4$ TPD spectra taken from the H(g)-irradiated Ge(100) surface were distinctly different for low and high H(g) doses/substrate temperatures. Reactions suggested by our data are: (1) adsorbed mono(${\beta}_1$)-/di-hydride(${\beta}_2$)-H(a) formation; (2) H(a)-by-H(g) abstraction; (3) $GeH_3$(a)-by-H(g) abstraction (Ge etching); and (4) hydrogenated amorphous germanium a-Ge:H formation. While all these reactions occur, albeit at higher temperatures, also on Si(100), H(g) absorption by Ge(100) was not detected. This is in contrast to Si(100) which absorbed H(g) readily once the surface roughened on the atomic scale. While this result is rather against expectation from its weaker and longer Ge-Ge bond as well as a larger lattice constant, we attribute the absence of direct H(g) absorption to insufficient atomic-scale surface roughening and to highly efficient subsurface hydrogenation at moderate (>300 K) and low (${\leq}300K$) temperatures, respectively.

Studies on Production of Heteropolysaccharide by Mutant of Xanthomonas malvacearum (Xanthomonas malvacearum 돌연변이주(突然變異株)의 Heteropolysaccharide 생산성(生産性)에 관(關)하여)

  • Lee, Ke-Ho;Kim, Mi-Sun;Park, Chan-Yung
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.77-87
    • /
    • 1987
  • The mutant with high productivity, X. malvacearum SNUF 560-6, was acquired from the X. malvacearum SNUF 560 with low productivity by UV-light irradiation. It was preserved is lyophilized stock culture and it was transferred to PDA slant to maintain viability fortnightly. Fermentations were started by retransfering to MY agar slant from PDA stok culture. The experiments for optimal xanthan gum production were studied in a chemically defined medium. Of the carbon and nitrogen sources tested, 0.4% sucrose medium and 10mM glutamic acid medium yielded the highest xanthan gun production respectively. The addition of 10g/l succinic acid stimulated xanthan gum production. Also 65mM $PO_4\;^{-3}\;(12.6g/l\;KH_2PO_4)$ was effective on xanthan gum production. Finally, medium 1 and medium 2 which have high xanthan gum production potencies were achieved in this stud. The components of medium 1 and medium 2 were as follows: Medium 1 : sucrose 40g/l glutamate 10mM $PO_4\;^{-3}\;54mM\;(KH_2PO_4\;12.65g/l)$ Citrate 2g/l $MgSO_4{\cdot}7H_2O\;0.2g/l$ $H_3BO_3\;0.005/l$ ZnO 0.006/l $FeCl_2{\cdot}6H_2O\;0.0024g/l$ $CaCO_3\;0.02g/l$ Medium 2 : $Sucrose\;40g/l\;(NH_4)_2SO_4\;2g/l$ $PO_4\;^{-3}\;65mM\;(KH_2PO_4\;12.65g/l)$ Succinate 10g/l $MgSO_4{\cdot}7H_2O\;0.02g/l$ $H_3BO_3\;0.06g/l$ ZnO 0.006g/l $FeCl_2{\cdot}6H_2O\;0.0024g/l$ $CaCO_3\;0.02g/l$.

  • PDF

INJECTIVELY DELTA CHOOSABLE GRAPHS

  • Kim, Seog-Jin;Park, Won-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1303-1314
    • /
    • 2013
  • An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor receive distinct colors. A graph G is said to be injectively $k$-choosable if any list $L(v)$ of size at least $k$ for every vertex $v$ allows an injective coloring ${\phi}(v)$ such that ${\phi}(v){\in}L(v)$ for every $v{\in}V(G)$. The least $k$ for which G is injectively $k$-choosable is the injective choosability number of G, denoted by ${\chi}^l_i(G)$. In this paper, we obtain new sufficient conditions to be ${\chi}^l_i(G)={\Delta}(G)$. Maximum average degree, mad(G), is defined by mad(G) = max{2e(H)/n(H) : H is a subgraph of G}. We prove that if mad(G) < $\frac{8k-3}{3k}$, then ${\chi}^l_i(G)={\Delta}(G)$ where $k={\Delta}(G)$ and ${\Delta}(G){\geq}6$. In addition, when ${\Delta}(G)=5$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{17}{7}$, and when ${\Delta}(G)=4$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{7}{3}$. These results generalize some of previous results in [1, 4].

Process Kinetics of Nisin Production in Batch and Continuous Culture (회분식 및 연속식 배양시 Nisin의 생산특성)

  • Yoo, Jin-Young;Park, Shin-Yang;Jin, Young-Ok;Koo, Young-Jo;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.504-509
    • /
    • 1989
  • Fermentation condition of Streptococcus lactis IFO 12007 for nisin production was examined. The optimal glucose concentration was 60g/ι. The pH and temperature optimum were 6.5 and 31$^{\circ}C$, respectively. The maximum nisin activity in batch culture was 2000IU/$m\ell$. The fermentation quotients after 7 hours of fermentation in batch culture were; specific glucose uptake rate:0.59g/g/h , specific nisin productivity: 34924IU/g/h, product yield: 5944IU/g, growth yield:0.24, biomass:4.81g/ι. The specific growth rate was affected by pH and temperature and the activation energy for growth was 1.35kcal/mole. pH control was essential for nisin production. Fed-batch culture using 20g/$\ell$ glucose medium produced 1420IU/$m\ell$ after 14 hours. The continuous culture could be operated at below 0.38h$^{-1}$ for nisin production. The steady state nisin concentration and specific nisin productivity were 740IU/$m\ell$ and 45000IU/g/h. The growth yield and maintenance energy were 0.144 and 207mg glucose/g-cell/h.

  • PDF

Efficient Control of Human G-CSF Gene Expression in the Primary Culture Cell using a FIV-Tet-On Vector System (FIV-Tet-On Vector System을 이용한 hG-CSF 유전자의 효율적인 발현 조절)

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.153-159
    • /
    • 2007
  • In this study, using FIV-based lentivirus vector system, we tried to express hG-CSF in tetracycline-controllable manner. hG-CSF influences the proliferation, differentiation, and survival of cells in the neutrophil lineage. To enhance stability and translation of hG-CSF transcript, WPRE sequence was also introduced into FIV-Tet-On vector at downstream region of either the hG-CSF gene or the sequence encoding rtTA. Primary culture cells (CEF, chicken embryonic fibroblast; PFF, procine fetal fibroblast) infected with the recombinant FIV were cultured in the medium supplemented with or without doxycycline for 48 hours, and induction efficiency was measured by comparing the hG-CSF gene expression level using quantitative real-time PCR, Western blot and ELISA. Higher hG-CSF expression and tighter expression control were observed from the vector in which the WPRE sequence was placed at downstream of the hG-CSF (in CEF) or rtTA (in PEE) gene. This FIV-Tet-On vector system may be helpful in solving serious physiological disturbance problems which has continuously hampered successful production of transgenic animals and gene therapy.

COMMUTING POWERS AND EXTERIOR DEGREE OF FINITE GROUPS

  • Niroomand, Peyman;Rezaei, Rashid;Russo, Francesco G.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.855-865
    • /
    • 2012
  • Recently, we have introduced a group invariant, which is related to the number of elements $x$ and $y$ of a finite group $G$ such that $x{\wedge}y=1_{G{\wedge}G}$ in the exterior square $G{\wedge}G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m{\wedge}k$ of $H{\wedge}K$ such that $h^m{\wedge}k=1_{H{\wedge}K}$, where $m{\geq}1$ and $H$ and $K$ are arbitrary subgroups of $G$.