DOI QR코드

DOI QR Code

Surface Reactions of Atomic Hydrogen with Ge(100) in Comparison with Si(100)

  • Jo, Sam Keun (Department of Nanochemistry, Gachon University)
  • Received : 2017.11.06
  • Accepted : 2017.11.24
  • Published : 2017.11.30

Abstract

The reactions of thermal hydrogen atoms H(g) with the Ge(100) surface were examined with temperature-programmed desorption (TPD) mass spectrometry. Concomitant $H_2$ and $CH_4$ TPD spectra taken from the H(g)-irradiated Ge(100) surface were distinctly different for low and high H(g) doses/substrate temperatures. Reactions suggested by our data are: (1) adsorbed mono(${\beta}_1$)-/di-hydride(${\beta}_2$)-H(a) formation; (2) H(a)-by-H(g) abstraction; (3) $GeH_3$(a)-by-H(g) abstraction (Ge etching); and (4) hydrogenated amorphous germanium a-Ge:H formation. While all these reactions occur, albeit at higher temperatures, also on Si(100), H(g) absorption by Ge(100) was not detected. This is in contrast to Si(100) which absorbed H(g) readily once the surface roughened on the atomic scale. While this result is rather against expectation from its weaker and longer Ge-Ge bond as well as a larger lattice constant, we attribute the absence of direct H(g) absorption to insufficient atomic-scale surface roughening and to highly efficient subsurface hydrogenation at moderate (>300 K) and low (${\leq}300K$) temperatures, respectively.

Keywords

References

  1. M. Stutzmann and J. Chevallier (Ed.), Hydrogen in Semiconductors: Bulk and Surface Properties (North-Holland, Amsterdam, 1991).
  2. S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Spring-Verlag, Berlin, 1987).
  3. J. Weber and A. Mesli (Ed.), Defects in Silicon: Hydrogen (Elsevier Science, 1999).
  4. J. Weber, Hydrogen in Semiconductors: From Basic Physics to Technology, Phys. Stat. Sol. 5, 535 (2008). https://doi.org/10.1002/pssc.200776819
  5. C. G. Van de Walle, and J. Neugebauer, Hydrogen in Semiconductors, Ann. Rev. Mater. Res. 36, 179 (2006). https://doi.org/10.1146/annurev.matsci.36.010705.155428
  6. H. N. Waltenburg and J. T. Yates, Jr., Chem. Rev. 95, 1589 (1995). https://doi.org/10.1021/cr00037a600
  7. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surf. Sci. Rep. 35, 1 (1999). https://doi.org/10.1016/S0167-5729(99)00005-9
  8. S. K. Jo, J. H. Kang, X.-M. Yang, J. M. White, J. G. Ekerdt, J. W. Keto, and J. Lee, Direct Absorption of Gas-Phase Atomic Hydrogen by Si(100): A Narrow Temperature Window, Phys. Rev. Lett. 85, 2144 (2000). https://doi.org/10.1103/PhysRevLett.85.2144
  9. J. Y. Maeng, S. Kim, S. K. Jo, W. P. Fitts, and J. M. White, Absorption of Gas-Phase Atomic Hydrogen by Si(100): Effect of Surface Atomic Structures, Appl. Phys. Lett. 79, 36 (2001). https://doi.org/10.1063/1.1379989
  10. M. Jung and S. K. Jo, Hydrogen Absorption by Si(100): Enhancement and Suppression by HF Etching, J. Phys. Chem. C 115, 23463 (2011). https://doi.org/10.1021/jp208186c
  11. S. K. Jo, Preparation and Stability of Silyl Adlayers on 2x2-Reconstructred and Modified Si(100) Surfaces, J. Kor. Vac. Soc. 18, 15 (2009). https://doi.org/10.5757/JKVS.2009.18.1.015
  12. J. H. Kang, S. K. Jo, B. Gong, P. Parkinson, D. E. Brown, J. M. White, and J. G. Ekerdt, Amorphization of Single-Crystalline Silicon by Thermal-Energy Atomic Hydrogen, Appl. Phys. Lett. 75, 91 (1999). https://doi.org/10.1063/1.124286
  13. A.W. R. Leitch, A. Alex, and J. Weber, Raman Spectroscopy of Hydrogen Molecules in Crystalline Silicon, Phys. Rev. Lett. 81, 421 (1998). https://doi.org/10.1103/PhysRevLett.81.421
  14. S. Pizzini, Point Defects in Semiconductors, Physical Chemistry of Semiconductor Materials and Processes (John Wiley & Sons, 2015) Chapter 2.
  15. J. J. Boland, Hydrogen as a Probe of Semiconductor Surface Structure: The Ge(111)-c(2 X 8) Surface, Science, 255, 186 (1992). https://doi.org/10.1126/science.255.5041.186
  16. J. Y. Maeng, J. Y. Lee, Y. E. Cho, S. Kim, and S. K. Jo, Surface Dihydrides on Ge(100): A Scanning Tunneling Microscopy Study, Appl. Phys. Lett. 19, 3555 (2002).
  17. J. Y. Lee, S. J. Jung, J. Y. Maeng, Y. E. Cho, S. Kim, and S. K. Jo, Atomic-Scale Structural Evolution of Ge(100) Surfaces Etched by H and D, Appl. Phys. Lett. 84, 5028 (2004). https://doi.org/10.1063/1.1763635
  18. J. Y. Lee, J. Y. Maeng, A. Kim, Y. E. Cho, and S. Kim, Kinetics of $H_2$ ($D_2$) Desorption from a Ge(100)-2x1:H(D) Surface Studied Using STM and TPD, J. Chem. Phys. 118, 1929 (2003). https://doi.org/10.1063/1.1531662
  19. P. W. Loscutoff and S. F. Bent, Reactivity of the Germanium Surface: Chemical Passivation and Functionalization, Ann. Rev. Phys. Chem. 57, 467 (2006). https://doi.org/10.1146/annurev.physchem.56.092503.141307
  20. J. Weber, M. Hiller, and E. V. Lavrov, Hydrogen in Germanium, Mater. Sci. Semicond. Proc. 9, 564 (2006). https://doi.org/10.1016/j.mssp.2006.08.007
  21. R. Pillarisetty, Academic and Industry Research Progress in Germanium Nanodevices, Nature 479, 324 (2011). https://doi.org/10.1038/nature10678
  22. P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu, R. K. Vasudevan, M. B. Okatan, S. Jesse, T. Aoki, M. R. McCartney, D. J. Smith, S. V. Kalinin, K. Lai, and A. A. Demkov, Carrier Density Modulation in a Germanium Heterostructure by Ferroelectric Switching, Nature Comm. 6, 6067 (2015). https://doi.org/10.1038/ncomms7067
  23. S. Banerjee, C. H. Patterson, and J. F. McGilp, Group V Adsorbate Structures on Vicinal Ge(001) Surface Determined from the Optical Spectrum, Appl. Phys. Lett. 110, 233903 (2017). https://doi.org/10.1063/1.4984588
  24. S. Hu, E. L. Lin, A. K. Hamze, A. Posadas, H. Wu, D. J. Smith, A. A. Demkov, and J. G. Ekerdt, Zintl Layer Formation during Perovskite ALD on Ge(001), J. Chem. Phys. 146, 052817 (2017). https://doi.org/10.1063/1.4972071
  25. J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.- W. Hwang, and D. Whang, Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science 344, 286 (2014). https://doi.org/10.1126/science.1252268
  26. M. Walker, M. S. Tedder, J. D. Palmer, J. J. Mudd, and C. f. McConville, Low Temperature Removal of Surface Oxides and Hydrocarbons form Ge(100) Using Atomic Hydrogen, Appl. Surf. Sci. 379, 1 (2016). https://doi.org/10.1016/j.apsusc.2016.02.190
  27. P. Ponath, A. B. Posada, and A. A. Demkov, Ge(001) Surface Cleaning Methods for Device Integration, Appl. Phys. Rev. 4, 021308 (2017). https://doi.org/10.1063/1.4984975
  28. T. Nishimura, S. Kabuyanagi, W. Zhang, C. H. Lee, T. Yajima, K. Nagashio, and A. Toriumi, Atomically Flat Planarization of Ge(100), (110), and (111) Surfaces in $H_2$ Annealing, Appl. Phys. Express 7, 051301 (2014). https://doi.org/10.7567/APEX.7.051301
  29. S. V. Sivaram, H. Y. Hui, M. de la Mata, J. Arbiol, and M. A. Filler, Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth, Nano Lett. 16, 6717 (2016). https://doi.org/10.1021/acs.nanolett.6b01640
  30. M. Stavola, Hydrogen in Silicon and Germanium, The 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium; Nov. 10-14, 2008, Kona, Hawaii, USA) Proceedings, pp. 337-343.
  31. S. K. Jo, B. Gong, G. Hess, J. M. White, and J. G. Ekerdt, Low-Temperature Si(100) Etching: Facile Abstraction of SiH3(a) by Thermal Hydrogen Atoms, Surf. Sci. Lett. 394, L162 (1997). https://doi.org/10.1016/S0039-6028(97)00801-7
  32. M. Budde, B. B. Nielsen, C. P. Cheney, N. H. Tolk, and L. C. Feldmann, Local Vibrational Modes of Isolated Hydrogen in Germanium, Phys. Rev. Lett. 85, 2965 (2000). https://doi.org/10.1103/PhysRevLett.85.2965
  33. M. Stavola, Hydrogen in Silicon and Germanium, Proceedings of the 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium) (Nov. 10-14, 2008; Hawaii, USA) pp. 337-343.