Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.6.174

Surface Reactions of Atomic Hydrogen with Ge(100) in Comparison with Si(100)  

Jo, Sam Keun (Department of Nanochemistry, Gachon University)
Publication Information
Applied Science and Convergence Technology / v.26, no.6, 2017 , pp. 174-178 More about this Journal
Abstract
The reactions of thermal hydrogen atoms H(g) with the Ge(100) surface were examined with temperature-programmed desorption (TPD) mass spectrometry. Concomitant $H_2$ and $CH_4$ TPD spectra taken from the H(g)-irradiated Ge(100) surface were distinctly different for low and high H(g) doses/substrate temperatures. Reactions suggested by our data are: (1) adsorbed mono(${\beta}_1$)-/di-hydride(${\beta}_2$)-H(a) formation; (2) H(a)-by-H(g) abstraction; (3) $GeH_3$(a)-by-H(g) abstraction (Ge etching); and (4) hydrogenated amorphous germanium a-Ge:H formation. While all these reactions occur, albeit at higher temperatures, also on Si(100), H(g) absorption by Ge(100) was not detected. This is in contrast to Si(100) which absorbed H(g) readily once the surface roughened on the atomic scale. While this result is rather against expectation from its weaker and longer Ge-Ge bond as well as a larger lattice constant, we attribute the absence of direct H(g) absorption to insufficient atomic-scale surface roughening and to highly efficient subsurface hydrogenation at moderate (>300 K) and low (${\leq}300K$) temperatures, respectively.
Keywords
Ge(100) Surface Adsorption; Surface Etching; Hydrogen Adsorption; Subsurface Hydrogenation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Stutzmann and J. Chevallier (Ed.), Hydrogen in Semiconductors: Bulk and Surface Properties (North-Holland, Amsterdam, 1991).
2 S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Spring-Verlag, Berlin, 1987).
3 J. Weber and A. Mesli (Ed.), Defects in Silicon: Hydrogen (Elsevier Science, 1999).
4 J. Weber, Hydrogen in Semiconductors: From Basic Physics to Technology, Phys. Stat. Sol. 5, 535 (2008).   DOI
5 C. G. Van de Walle, and J. Neugebauer, Hydrogen in Semiconductors, Ann. Rev. Mater. Res. 36, 179 (2006).   DOI
6 H. N. Waltenburg and J. T. Yates, Jr., Chem. Rev. 95, 1589 (1995).   DOI
7 K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surf. Sci. Rep. 35, 1 (1999).   DOI
8 S. K. Jo, J. H. Kang, X.-M. Yang, J. M. White, J. G. Ekerdt, J. W. Keto, and J. Lee, Direct Absorption of Gas-Phase Atomic Hydrogen by Si(100): A Narrow Temperature Window, Phys. Rev. Lett. 85, 2144 (2000).   DOI
9 J. Y. Maeng, S. Kim, S. K. Jo, W. P. Fitts, and J. M. White, Absorption of Gas-Phase Atomic Hydrogen by Si(100): Effect of Surface Atomic Structures, Appl. Phys. Lett. 79, 36 (2001).   DOI
10 M. Jung and S. K. Jo, Hydrogen Absorption by Si(100): Enhancement and Suppression by HF Etching, J. Phys. Chem. C 115, 23463 (2011).   DOI
11 S. K. Jo, Preparation and Stability of Silyl Adlayers on 2x2-Reconstructred and Modified Si(100) Surfaces, J. Kor. Vac. Soc. 18, 15 (2009).   DOI
12 J. H. Kang, S. K. Jo, B. Gong, P. Parkinson, D. E. Brown, J. M. White, and J. G. Ekerdt, Amorphization of Single-Crystalline Silicon by Thermal-Energy Atomic Hydrogen, Appl. Phys. Lett. 75, 91 (1999).   DOI
13 A.W. R. Leitch, A. Alex, and J. Weber, Raman Spectroscopy of Hydrogen Molecules in Crystalline Silicon, Phys. Rev. Lett. 81, 421 (1998).   DOI
14 S. Pizzini, Point Defects in Semiconductors, Physical Chemistry of Semiconductor Materials and Processes (John Wiley & Sons, 2015) Chapter 2.
15 J. J. Boland, Hydrogen as a Probe of Semiconductor Surface Structure: The Ge(111)-c(2 X 8) Surface, Science, 255, 186 (1992).   DOI
16 J. Y. Maeng, J. Y. Lee, Y. E. Cho, S. Kim, and S. K. Jo, Surface Dihydrides on Ge(100): A Scanning Tunneling Microscopy Study, Appl. Phys. Lett. 19, 3555 (2002).
17 J. Y. Lee, S. J. Jung, J. Y. Maeng, Y. E. Cho, S. Kim, and S. K. Jo, Atomic-Scale Structural Evolution of Ge(100) Surfaces Etched by H and D, Appl. Phys. Lett. 84, 5028 (2004).   DOI
18 R. Pillarisetty, Academic and Industry Research Progress in Germanium Nanodevices, Nature 479, 324 (2011).   DOI
19 P. W. Loscutoff and S. F. Bent, Reactivity of the Germanium Surface: Chemical Passivation and Functionalization, Ann. Rev. Phys. Chem. 57, 467 (2006).   DOI
20 J. Weber, M. Hiller, and E. V. Lavrov, Hydrogen in Germanium, Mater. Sci. Semicond. Proc. 9, 564 (2006).   DOI
21 P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu, R. K. Vasudevan, M. B. Okatan, S. Jesse, T. Aoki, M. R. McCartney, D. J. Smith, S. V. Kalinin, K. Lai, and A. A. Demkov, Carrier Density Modulation in a Germanium Heterostructure by Ferroelectric Switching, Nature Comm. 6, 6067 (2015).   DOI
22 S. Banerjee, C. H. Patterson, and J. F. McGilp, Group V Adsorbate Structures on Vicinal Ge(001) Surface Determined from the Optical Spectrum, Appl. Phys. Lett. 110, 233903 (2017).   DOI
23 S. Hu, E. L. Lin, A. K. Hamze, A. Posadas, H. Wu, D. J. Smith, A. A. Demkov, and J. G. Ekerdt, Zintl Layer Formation during Perovskite ALD on Ge(001), J. Chem. Phys. 146, 052817 (2017).   DOI
24 J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.- W. Hwang, and D. Whang, Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science 344, 286 (2014).   DOI
25 M. Walker, M. S. Tedder, J. D. Palmer, J. J. Mudd, and C. f. McConville, Low Temperature Removal of Surface Oxides and Hydrocarbons form Ge(100) Using Atomic Hydrogen, Appl. Surf. Sci. 379, 1 (2016).   DOI
26 J. Y. Lee, J. Y. Maeng, A. Kim, Y. E. Cho, and S. Kim, Kinetics of $H_2$ ($D_2$) Desorption from a Ge(100)-2x1:H(D) Surface Studied Using STM and TPD, J. Chem. Phys. 118, 1929 (2003).   DOI
27 M. Stavola, Hydrogen in Silicon and Germanium, The 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium; Nov. 10-14, 2008, Kona, Hawaii, USA) Proceedings, pp. 337-343.
28 P. Ponath, A. B. Posada, and A. A. Demkov, Ge(001) Surface Cleaning Methods for Device Integration, Appl. Phys. Rev. 4, 021308 (2017).   DOI
29 T. Nishimura, S. Kabuyanagi, W. Zhang, C. H. Lee, T. Yajima, K. Nagashio, and A. Toriumi, Atomically Flat Planarization of Ge(100), (110), and (111) Surfaces in $H_2$ Annealing, Appl. Phys. Express 7, 051301 (2014).   DOI
30 S. V. Sivaram, H. Y. Hui, M. de la Mata, J. Arbiol, and M. A. Filler, Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth, Nano Lett. 16, 6717 (2016).   DOI
31 S. K. Jo, B. Gong, G. Hess, J. M. White, and J. G. Ekerdt, Low-Temperature Si(100) Etching: Facile Abstraction of SiH3(a) by Thermal Hydrogen Atoms, Surf. Sci. Lett. 394, L162 (1997).   DOI
32 M. Budde, B. B. Nielsen, C. P. Cheney, N. H. Tolk, and L. C. Feldmann, Local Vibrational Modes of Isolated Hydrogen in Germanium, Phys. Rev. Lett. 85, 2965 (2000).   DOI
33 M. Stavola, Hydrogen in Silicon and Germanium, Proceedings of the 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium) (Nov. 10-14, 2008; Hawaii, USA) pp. 337-343.