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COMMUTING POWERS AND EXTERIOR

DEGREE OF FINITE GROUPS

Peyman Niroomand, Rashid Rezaei, and Francesco G. Russo

Abstract. Recently, we have introduced a group invariant, which is re-
lated to the number of elements x and y of a finite group G such that
x ∧ y = 1G∧G in the exterior square G ∧ G of G. This number gives re-

strictions on the Schur multiplier of G and, consequently, large classes of
groups can be described. In the present paper we generalize the previous
investigations on the topic, focusing on the number of elements of the

form hm ∧ k of H ∧ K such that hm ∧ k = 1H∧K , where m ≥ 1 and H
and K are arbitrary subgroups of G.

1. Homological algebra and commutativity degree

All the groups, which are considered in the present paper, are supposed to be
finite. Classical contributions of Brown, Ellis, Johnson, Loday and Robertson
[2, 3, 6] and the recent contributions [12, 10, 11] contain technical notions
of homological algebra which generalize the well-known Schur multiplier of a
group to the Schur multiplier of a pair of groups and to the Schur multiplier of
a triple of groups. By a triple (G,H,K) we mean a group G with two normal
subgroups H and K and the Schur multiplier of (G,H,K) is an abelian group
M(G,H,K), defined in terms of the mapping cone B(G,H,K) of the canonical
cofibration B(G,K) → B(G/K,HK/H). The notions of mapping cone and of
canonical cofibration are commonly used in algebraic topology and they can be
found in [6]. An alternative way, which we prefer in this context, is to relate
the Schur multiplier of a triple with an important construction in algebraic
topology and group theory.

A group G acts by conjugation on its normal subgroups H and K via the
rule gx = gxg−1 for g in G and x in H or K, and the exterior product H ∧K is
defined as the group generated by the symbols h⊗ k, subject to the relations:

hh′ ⊗ k = ( hh′ ⊗ hk) (h⊗ k), kk′ ⊗ h = (k ⊗ h) ( kh⊗ kk′), y ⊗ y = 1,
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where h, h′ ∈ H, k, k′ ∈ K and y ∈ H∩K. Briefly, h∧k denotes h⊗k satisfying
all the above relations. The map

κ′ : h ∧ k ∈ H ∧K 7→ [h, k] = hkh−1k−1 ∈ [H,K]

turns out to be a group epimorphism, whose kernel kerκ′ is abelian. In [6] it
is shown

kerκ′ ≃ M(G,H,K)

whenever G = HK and this is a very useful way to look at M(G,H,K).
Omitting the relation y⊗y = 1, we may define the non-abelian tensor product

H ⊗K of H and K. By analogy, the map

κ : h⊗ k ∈ H ⊗K 7→ [h, k] = hkh−1k−1 ∈ [H,K]

turns out to be a group epimorphism, whose kernel

kerκ = J(G,H,K)

is again abelian. We note that J(G,H,K) is related to the fundamental group
of a covering space and has significant interest in algebraic topology (see [2, 3,
6]). We note that G = HK (with H and K normal in G) satisfies the following
commutative diagram

(1)

1 −−−−→ J(G,H,K) −−−−→ H ⊗K
κ−−−−→ [H,K] −−−−→ 1

π

y ε

y ∥∥∥
1 −−−−→ M(G,H,K) −−−−→ H ∧K

κ′

−−−−→ [H,K] −−−−→ 1

with central extensions as rows and natural epimorphisms

π : h⊗ k ∈ J(G,H,K) 7→ h ∧ k ∈ M(G,H,K),

ε : h⊗ k ∈ H ⊗K 7→ h ∧ k ∈ H ∧K

as columns. Of course, if G = H = K, then M(G) is the Schur multiplier of
G, H ⊗ K = G ⊗ G is the non-abelian tensor square of G and, in particular,
Gab ⊗Z Gab is the usual tensor square of an abelian group.

It may be helpful to recall that the actions of H on K induce an action

a ∈ H ∗K 7−→ a(h⊗ k) = ah ⊗ ak ∈ H ⊗K,

which allows us to see H ⊗K as a suitable homomorphic image of the central
product H ∗ K. When we have actions, there are stabilisers and orbits. We
are going to focuse our attention on a specific action. If x ∈ G, the exterior
centralizer of x in G is the set

C∧
G(x) = {a ∈ G | a ∧ x = 1G∧G},

which turns out to be a subgroup of G and the exterior center of G is the set

Z∧(G) = {g ∈ G | 1
G∧G

= g ∧ y ∈ G ∧G,∀y ∈ G} =
∩
x∈G

C∧
G(x)
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which is a subgroup of the center Z(G) of G. Further details can be found
in [11, 12]. Very briefly, we mention that the interest in studying C∧

G(x) and
Z∧(G) is due to the fact that they allow us to decide whether G is a capable
group or not, that is, whether G is isomorphic to E/Z(E) for some group E or
not. [1] illustrates that capable groups are well-known and classified.

Now we recall from [8, 9] that the commutativity degree of G is the ratio

d(G) =
|{(x, y) ∈ G×G | [x, y] = 1}|

|G|2
=

1

|G|2
∑
x∈G

|CG(x)| =
k(G)

|G|
,

where k(G) is the number of the G-conjugacy classes [x]G = {xg | g ∈ G} that
constitute G. There is a wide range of results on d(G) and its generalizations
in the last decades. For instance, given an arbitrary subgroup H of G, in [7]
the n-th relative nilpotency degree of G was introduced as follows

d(n)(H,G) =
|{(h1, . . . , hn, g) ∈ Hn ×G | [h1, . . . , hn, g] = 1}|

|H|n |G|

=
1

|H|n |G|
∑

h1,...,hn∈H

|CG([h1, . . . , hn])|.

It is clearly a generalization of d(G), and, in case n = 1, the further general-
ization was proposed

d(H,K) =
|{(h, k) ∈ H ×K | [h, k] = 1}|

|H| |K|
=

1

|H| |K|
∑
h∈H

|CK(h)| = kK(H)

|H|
,

where H is a normal subgroup of G, K is an arbitrary subgroup of G and
kK(H) is the number of the K-conjugacy classes [h]K = {hk | k ∈ K} that
constitute H.

We will focuse on a recent contribution in [10], where the exterior degree of
G can be written as

d∧(G) =
|{(x, y) ∈ G×G | x ∧ y = 1

G∧G
}|

|G|2
,

which can be written by [10, Lemma 2.2] as

d∧(G) =
1

|G|

k(G)∑
i=1

|C∧
G(xi)|

|CG(xi)|
.

Analogously, given two arbitrary subgroups H and K of G, we define for m ≥ 1
the m-th relative exterior degree of H and K in G

d∧m(H,K) =
|{(h, k) ∈ H ×K | hm ∧ k = 1

H∧K
}|

|H| |K|
.

In particular, d∧m(G) = d∧m(G,G) is them-th exterior degree of G and, of course,
d∧1 (G,G) = d∧(G) so that it is meaningful to generalize the bounds in [10]. We
also note that for H = G and m = 1 there are results on d∧(G,K) in [11].
While the commutativity degree represents the probability that two randomly
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picked elements of G are commuting, the n-th relative nilpotency degree is a
variation on this theme. By analogy with the operator ∧, the m-th relative
exterior degree is a variation on the theme of the exterior degree, involving the
powers of x and the single element y. We will study the effects of d∧m(H,K)
on the structure of G in the successive sections.

2. Basic properties

An immediate observation is that we may rewrite d∧m(H,K) as:

d∧m(H,K) =
1

|H| |K|
∑
h∈H

|C∧
K(hm)|.

Assume that H is normal in G and C1 . . . , CkK(H) are the K-conjugacy classes
that constitute H. It follows that

(2)

|H| |K| d∧m(H,K) =
∑
h∈H

|C∧
K(hm)| =

kK(H)∑
i=1

∑
h∈Ci

|C∧
K(hm)|

=

kK(H)∑
i=1

|K : CK(hi)| |C∧
K(hm

i )|

=

kK(H)∑
i=1

|K|
|CK(hm

i )|
|CK(hm

i )|
|CK(hi)|

|C∧
K(hm

i )|

= |K|
kK(H)∑
i=1

(
|CK(hm

i )|
|CK(hi)|

)
|C∧

K(hm
i )|

|CK(hm
i )|

= |K|
kK(H)∑
i=1

α(m, i)
|C∧

K(hm
i )|

|CK(hm
i )|

,

where α(m, i) is the index of |CK(hi)| in |CK(hm
i )| and thus a natural number.

The assumption that H has to be normal in G is done in order to have an
entire conjugacy class which is fixed under the action of K on H. For the rest
of the paper it may be helpful to define the group

L(m,hi,K) =
CK(hm

i )

C∧
K(hm

i )
.

Lemma 2.1. Let H be a normal subgroup of a group G and K be a subgroup
of G. Then

d∧m(H,K) =
1

|H|

kK(H)∑
i=1

α(m, i)
|C∧

K(hm
i )|

|CK(hm
i )|

=
1

|H|

kK(H)∑
i=1

α(m, i)

|L(m,hi,K)|
.

In particular, if G = HK and K is normal in G, then L(m,hi,K) is isomorphic
to a subgroup of M(G,H,K).
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Proof. The first part follows from (2). Now assume that G = HK for H and
K normal in G. The exact sequence (1) implies that for all i = 1, . . . , kK(H)
the map x ∈ CK(hm

i ) 7→ hm
i ∧ x ∈ M(G,H,K) is a homomorphism of groups.

On the other hand, its kernel is C∧
K(hm

i ), and, consequently, L(m,hi,K) is
isomorphic to a subgroup of M(G,H,K). □

The sequence d∧m(H,K) is monotone in the sense of the next result. We must
assume that m is a prime power. This will be necessary (but not sufficient) to
have the subgroup lattice of a cyclic group which is a chain.

Proposition 2.2. Let H and K be subgroups of a group G and p be a prime
divisor of |H|. Then there exists an integer r ≥ 1 such that

d∧pr−1(H,K) ≥ d∧pr−2(H,K) ≥ · · · ≥ d∧p (H,K) ≥ d∧(H,K).

Proof. Let h ∈ H be of order pr for some integer r ≥ 1. Then {1} = ⟨hpr ⟩ ≤
⟨hpr−1⟩ ≤ · · · ≤ ⟨h⟩ implies C∧

K({1}) = K ≥ C∧
K(hpr−1

) = C∧
K(⟨hpr−1⟩) ≥ · · · ≥

C∧
K(hp) = C∧

K(⟨hp⟩) ≥ C∧
K(h) = C∧

K(⟨h⟩). Therefore∑
h∈H

|C∧
K(h)| ≤

∑
h∈H

|C∧
K(hp)| ≤ · · · ≤

∑
h∈H

|C∧
K(hpr−1

)|,

from which we deduce

d∧(H,K) ≤ d∧p (H,K) ≤ · · · ≤ d∧pr−1(H,K). □

Among groups with trivial Schur multiplier there are important classes of
groups. For instance, a cyclic group C = ⟨c⟩ has |M(C)| = 1; a metacyclic
group of the form

D = ⟨a, b | ap
n

= bp = 1, b−1ab = a1+pn−1

⟩

(where n ≥ 3 if p = 2) also has |M(D)| = 1 (see [1, 2]); finally, looking at [4],
several sporadic simple groups have trivial Schur multiplier. In our context, we
are interested in seeing what happens to d∧m(H,K) when M(G,H,K) is trivial.
As a consequence of Lemma 2.1, we find immediately the next corollary.

Corollary 2.3. Let G = HK for two normal subgroups H and K of G with H
of exponent pr − 1 for some r ≥ 1 and some prime p. If M(G,H,K) is trivial,
then α(pr, i) = |L(pr, hi,K)| = 1.

Proof. By Lemma 2.1, |L(pr, hi,K)| = 1. Since H has exponent pr − 1, we get

hpr−1
i = 1, that is, hpr

i = hi for all i = 1, . . . , kK(H), and so α(pr, i) = 1. □

When r → ∞ or r → 0, Proposition 2.2 yields the following result.

Corollary 2.4. Let H be a normal subgroup of a group G, K a subgroup of G
and p a prime divisor of |H|. Then

lim
r→0

d∧pr (H,K) = d∧(H,K).
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Furthermore, if limr→∞
α(pr,i)

|L(pr,hi,K)| = 1 and the action of K on H induces just

one orbit, then

lim
r→∞

d∧pr (H,K) ≤ 1

p
.

In particular, d(H,K) = limr→∞ d∧pr (H,K) = 1
p , provided that |H| = p.

Proof. The first part of the result follows from Proposition 2.2.
Lemma 2.1 and the assumptions imply

(3)

lim
r→∞

d∧pr (H,K) = lim
r→∞

1

|H|

kK(H)∑
i=1

α(pr, i)

|L(pr, hi,K)|

=
1

|H|
lim
r→∞

kK(H)∑
i=1

α(pr, i)

|L(pr, hi,K)|

=
1

|H|

kK(H)∑
i=1

lim
r→∞

α(pr, i)

|L(pr, hi,K)|

=
kK(H)

|H|
= d(H,K).

The choice of p implies 1
|H| ≤

1
p and therefore limr→∞ d∧pr (H,K) ≤ kK(H)

p . In

particular, if the action of K on H induces just one orbit, then kK(H) is just
one and so limr→∞ d∧pr (H,K) ≤ 1

p . The rest follows clearly from (3). □

With respect to direct products there is a sort of natural splitting for d∧m(H,
K) and this is shown below.

Proposition 2.5. If A,B,C,D are subgroups of a group G such that (|A|, |B|)
= (|C|, |D|) = 1, then

d∧m(A×B,C ×D) = d∧m(A,C) · d∧m(B,D).

Proof.

|A×B| |C ×D| d∧m(A×B,C ×D)

= |A| |B| |C| |D| d∧m(A×B,C ×D)

=
∑

(a,b)∈A×B

|C∧
C×D((am, bm))|

=

(∑
a∈A

|C∧
C(a

m)|

)(∑
b∈B

|C∧
D(bm)|

)
= |A| |C| d∧m(A,C) |B| |D| d∧m(B,D). □

In particular, [10, Lemma 2.10] can be found as a special case of the previous
result. Another general property is encountered when we go to form quotients
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and for m = 1 it can be found in [10, Proposition 2.6]. Before describing it, we
introduce the set

Z∧(H,K) = {k ∈ K | h ∧ k = 1H∧K ∀h ∈ H},
where H and K are normal subgroups of G, acting upon each other by conjuga-
tion. Z∧(H,K) is largely described in [11] when G = H and it is easy to check
that Z∧(H,K) is a subgroup of K, and, in particular, Z∧(G,G) = Z∧(G).

Proposition 2.6. If H and K are two subgroups of G containing a normal
subgroup N of G, then

d∧m(H,K) ≤ d∧m(H/N,K/N).

The equality happens, provided N ⊆ Z∧(H,K). In the case that H has exponent
m− 1, the converse holds.

Proof.

|H| |K| d∧m(H,K) =
∑
h∈H

|C∧
K(hm)| =

∑
hN∈H/N

∑
n∈N

|C∧
K(hmn)|

=
∑

hN∈H/N

∑
n∈N

|C∧
K(hmn)N |

|N |
|C∧

K(hmn) ∩N |

≤
∑

hN∈H/N

∑
n∈N

|C∧
K/N (hmN)| |C∧

K(hmn) ∩N |

=
∑

hN∈H/N

|C∧
K/N (hmN)|

∑
n∈N

|C∧
K(hmn) ∩N |

≤ |N |2
∑

hN∈H/N

|C∧
K/N (hmN)|

= |H| |K| d∧(H/N,K/N).

We find always an exact sequence

(4) N ∧K
φ−−−−→ H ∧K

ε−−−−→ (H/N) ∧ (K/N) −−−−→ 1,

where ι : n ∈ N 7→ ι(n) ∈ H is the natural embedding of N into H,

φ : n ∧ k ∈ N ∧K 7→ ι(n) ∧ h ∈ H ∧K

and

ε : h ∧ k ∈ H ∧K 7→ hN ∧ kN ∈ (H/N) ∧ (K/N)

is induced by the natural epimorphisms of H onto H/N and of K onto K/N .
If N ⊆ Z∧(H,K), then Im φ = 1

N∧K
and (4) implies H/N ∧K/N ≃ H ∧K so

that

|N |2 |{(hN, kN) ∈ H/N ×K/N | hmN ∧ kN = 1
(H/N)∧(K/N)

}|
= |{(h, k) ∈ H ×K | hm ∧ k = 1H∧K}|,

hence d∧m(H,K) = d∧m(H/N,K/N).
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Now assume that d∧m(H,K) = d∧m(H/N,K/N), then from the equality we
have |C∧

K(hm) ∩N | = |N | for all h ∈ H, and so N ⊆ C∧
K(h) for all h ∈ H. It

implies that N ⊆ Z∧(H,K), as required. □

A particular restriction is the following.

Theorem 2.7. Let G = HK for two normal subgroups H and K. Then for
all m ≥ 1

β(m)
d(H,K)

|M(G,H,K)|
≤ d∧m(H,K) ≤ γ(m) d(H,K),

where β(m) = min{α(m, i) | i = 1, . . . , kK(H)} and γ(m) = max{α(m, i) | i =
1, . . . , kK(H)}.

Proof. Keeping in mind Lemma 2.1 and noting that CK(hm
i )/C∧

K(hm
i ) is iso-

morphic to a subgroup of M(G,H,K), we have

|C∧
K(hm

i )|/|CK(hm
i )| ≥ 1/|M(G,H,K)|.

Therefore

d∧m(H,K) =
1

|H|

kK(H)∑
i=1

α(m, i)
|C∧

K(hm
i )|

|CK(hm
i )|

≥ β(m) kK(H)

|H| |M(G,H,K)|

= β(m)
d(H,K)

|M(G,H,K)|
.

(5)

On another hand, again Lemma 2.1 implies

d∧m(H,K) =
1

|H|

kK(H)∑
i=1

α(m, i)
|C∧

K(hm
i )|

|CK(hm
i )|

≤ γ(m)
kK(H)

|H|
= γ(m) d(H,K).

□

In [10, 12] it was noted that a group G with Z∧(G) = Z(G) has strong
structural restrictions; among these it was noted in [10] that d∧1 (G) = d∧(G) =
d(G). We find something of similar in the next result.

Corollary 2.8. Let G = HK for two normal subgroups H and K. If M(G,H,
K) is trivial and H has exponent m − 1, then, for all m ≥ 1, d∧m(H,K) =
d(H,K).

Proof. Since M(G,H,K) = 1 is trivial, the lower bound in (5) is reduced to
β(m) d(H,K). H has exponent m−1 and then, using the notations of Lemma
2.1, hm−1

i = 1, that is, hm
i = hi for all i = 1, . . . , kK(H). Consequently,

α(m, i) = α(m) = β(m) = γ(m) = 1. Then Theorem 2.7 becomes d(H,K) ≤
d∧m(H,K) ≤ d(H,K) and the result follows. □

Another consequence of Theorem 2.7 is related to Proposition 2.2.
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Corollary 2.9. Let G = HK for two normal subgroups H and K and p be a
prime divisor of |H|. Then there exists an integer r ≥ 1 such that

γ(pr−1)

p
kK(H) ≥ d∧pr−1(H,K) ≥ d∧pr−2(H,K) ≥ · · · ≥ β(pr−1)

d(H,K)

|M(G,H,K)|
.

Proof. It is enough to apply Theorem 2.7 and Proposition 2.2. □

In a certain sense, Corollary 2.4 continues to be true without restrictions on
m. This is illustrated below.

Proposition 2.10. Let G = HK for two normal subgroups H and K such
that [H,K] ̸= 1. Then d∧m(H,K) ≤ γ(m) 2p−1

p2 , where p is the smallest

prime dividing both |G| and |K|. In particular, if H has exponent m − 1,
then d∧m(H,K) ≤ 2

p .

Proof. From the choice of p we deduce |C∧
K(H)| ≤ |CK(H)| ≤ |K|

p . Now

|CK(H)|− |C∧
K(H)| ≤ |K|

p . The upper bound in Theorem 2.7 and [5, Corollary

3.9] imply

d∧m(H,K) ≤ γ(m) d(H,K) ≤ γ(m)
2p− 1

p2
.

In particular, if H has exponent m − 1, then the argument in Corollary 2.8
implies γ(m) = 1, hence

2p− 1

p2
=

2

p
− 1

p2
≤ 2

p
. □

The following result justifies the interest for the numerical restrictions on
d∧m(H,K), which have been the subject of most of the previous bounds. These
allow us to describe the position of some subgroups in the whole group, when
we consider some special values of the m-th relative exterior degree.

Corollary 2.11. Let H be a normal subgroup of G of exponent m− 1 and K
be a normal subgroup of G such that G = HK and M(G,H,K) is trivial. If
d∧m(H,K) = 2p−1

p2 for some prime p, then p divides |G|. If p is the smallest

prime divisor of |G|, then |H : CH(K)| = |K : CK(H)| = p and, hence, H ̸= K.
In particular, if d∧m(H,K) = 3

4 , then |H : CH(K)| = |K : CK(H)| = 2.

Proof. Corollary 2.8 implies d∧m(H,K) = d(H,K) for all m ≥ 1. The rest
follows from [5, Proposition 3.1]. □

3. Dihedral groups and generalized quaternion groups

Given the results in Section 2 and those in [7, 8, 9, 10, 11], we want to
have a closer look at the class of dihedral groups and at that of generalized
quaternion groups. As known, these groups possess a cyclic group of index 2
and are metacyclic. We will be quite general and recall that

D2n = Cn ⋊ C2 = ⟨a, b | an = b2 = 1, b−1ab = a−1⟩
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is the dihedral group of order 2n, where n ≥ 1. Assume thatD2n = {1, a, a2, . . . ,
. . . an−1, b, ab, a2b, . . . , an−1b} and t = gcd(m,n). Since Z∧(G) = 1 and (a

in
t )m

= 1 for 0 ≤ i ≤ t− 1, for t elements of D2n we have |C∧
D2n

(xm)| = 2n and for

n− t elements |C∧
D2n

(xm)| = n. Now, if m is odd, then |C∧
D2n

((ajb)m)| = 2 for
0 ≤ j ≤ n− 1 and so

d∧m(D2n) =
n2 + nt+ 2n

4n2
.

If m is even, then (ajb)m = 1 and so |C∧
D2n

((ajb)m)| = 2n, therefore

d∧m(D2n) =
3n2 + nt

4n2
.

Summarizing,

(6) d∧m(D2n) =


3n+gcd(m,n)

4n , if m is even,

n+gcd(m,n)+2
4n , if m is odd.

A similar computation can be made for

Qn = ⟨a, b | an = b2 = (ab)2⟩,

which is the generalized quaternion group of order 4n. Here we find that

(7) d∧m(Qn) =


3n+gcd(m,n)

4n , if m is even,

n+gcd(m,n)+2
4n , if m is odd.

From [10, Examples 3.1 and 3.2],

d∧(D2n) = d(D2n) = d∧(Qn) = d(Qn)

for all n ≥ 1 and we have just shown that for all m ≥ 1 (and for all n ≥ 1)

d∧m(D2n) = d∧m(Qn).

We note that |M(D2n)| ̸= 1 and |M(Qn)| = 1 and so we cannot apply Corollary
2.8, but (6) and (7) show, in some sense, that the hypothesis of Corollary 2.8
is still true. We note also that (6) and (7) agree with [7, Example 3.11] and
[11, Section 4].
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