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Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a
connected graph G, the k-vector

r(v|W ) = (d(v,w1), d(v, w2), . . . , d(v,wk))

is called the metric representation of v with respect to W , where d(x, y) is the distance

between the vertices x and y. A set W is called a resolving set for G if distinct vertices

of G have distinct metric representations with respect to W . The minimum cardinality

of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum

cardinality is a basis of G. The corona product, G⊙H of graphs G and H is obtained by

taking one copy of G and n(G) copies of H , and by joining each vertex of the ith copy of

H to the ith vertex of G. In this paper, we obtain bounds for dim(G⊙K1), characterize

all graphs G with dim(G ⊙ K1) = dim(G), and prove that dim(G ⊙ K1) = n − 1 if and

only if G is the complete graph Kn or the star graph K1,n−1.

1. Introduction

Throughout this paper G is a connected finite simple graph of order n(G). The
vertex and edge sets of G are V (G) and E(G), respectively. For vertices u and
v in a graph G, the distance of two vertices u and v, denoted by dG(u, v), is the
length of a shortest path between u and v in G. We write it simply d(u, v) when no
confusion can arise. The diameter of G, D(G), is max

u,v∈V (G)
d(u, v). The symbol

(v1, v2, . . . , vn) represents a path of order n, Pn.
For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the

k-vector r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric represen-
tation of v with respect to W . The set W is called a resolving set for G if distinct
vertices of G have different metric representations. A resolving set W for G with
minimum cardinality is called a metric basis of G, and its cardinality is the metric

Received November 17, 2021; revised June 24, 2022; accepted June 24, 2022.
2020 Mathematics Subject Classification: 05C12.
Key words and phrases: Resolving set, Metric dimension, Metric basis, Corona product.

123



124 Mohsen Jannesari

dimension, dim(G), of G. It is obvious that to see whether a given set W is a
resolving set, it is sufficient to consider the vertices in V (G)\W , because w ∈ W is
the unique vertex of G for which d(w,w) = 0.

In [12], Slater introduced the idea of a resolving set and used a locating set
and the location number for a resolving set and the metric dimension, respectively.
He described the usefulness of these concepts when working with U.S. Sonar and
Coast Guard Loran stations. Independently, Harary and Melter [8] discovered the
concept of the location number as well and called it the metric dimension. The
concept of a resolving set has various applications in diverse areas including coin
weighing problems [11], network discovery and verification [1], robot navigation [9],
mastermind game [3], problems of pattern recognition and image processing [10],
and combinatorial search and optimization [11]. For more results related to these
concepts see [2, 3, 4, 6, 9].

The join of two graphsG andH , G∨H is the graph with vertex set V (G)∪V (H)
and edge set E(G) ∪ E(H) and joining each vertex of G to all vertices of H . Also,
the disjoint union of two graphs G and H , V (G) ∩ V (H) = ∅, is the graph with
vertex set V (G)∪V (H) and edge set E(G)∪E(H). Chartrand et al. [5] determined
the metric dimension of some families of graphs such as paths, trees, and complete
graphs. The following theorem gives the metric dimension of some well-known
classes of graphs.

Theorem 1.1. ([5, 13]) Let G be a graph of order n ≥ 2.

(a) dim(G) = 1 if and only if G = Pn.

(b) dim(G) = n− 1 if and only if G = Kn.

(c) For n ≥ 3, dim(Cn) = 2.

(d) For n ≥ 4, dim(G) = n−2 if and only if G = Ks,t(s, t ≥ 1), G = Ks∨Kt(s ≥
1, t ≥ 2), or G = Ks ∨ (Kt ∪K1)(s, t ≥ 1).

The corona product, G ⊙H of graphs G and H is obtained by taking one copy of
G and n(G) copy of H , and by joining each vertex of the ith copy of H to the
ith vertex of G, 1 ≤ i ≤ n(G). When n(H) ≥ 2, Fernau et al. [7], showed that
dim(G ⊙H) is equal to n(G) times of adjacency dimension of H . When n(H) = 1
the problem of finding dim(G⊙H) is more difficult and there is a few results about
it.

For each integer k ≥ 2, Yero et al. [14], defined the graph G ⊙k H recursively
from G⊙H as G⊙k H = (G⊙k−1 H)⊙H . They proved the following theorem for
the case n(H) = 1.
Theorem 1.2. ([14]) For every connected graph G of order n ≥ 2, dim(G⊙kK1) ≤
2k−1n− 1.

Buczkowski et al. [2] proved that if G′ is a graph by adding a leaf to a nontrivial
graph G, then

(1.1) dim(G) ≤ dim(G′) ≤ dim(G) + 1
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This implies dim(G) ≤ dim(G⊙K1). Yero et al. [14] compute dim(G⊙K1), when
G is a tree.

Theorem 1.3. ([14]) If T is a tree, then the metric dimension of T ⊙K1 is equal
to the number of leaves of T .

In this paper, we focus on the metric dimension of G⊙K1. Clearly, G⊙K1 is
a path if and only G ∈ {K1,K2}. Hence, for graphs G of order greater than 2 we
have 2 ≤ dim(G ⊙K1) ≤ n(G) − 1. We obtain an upper bound for dim(G ⊙K1),
in terms of order and diameter of G. Using this bound we characterize all graphs
G with dim(G ⊙K1) = n(G) − 1. Then we characterize all graphs that attain the
bound in Theorem 1.2. In fact we prove dim(G ⊙k K1) = 2k−1n − 1 if and only
if k = 1 and G is complete graph Kn or G is star graph K1,n−1. Also, we give a
necessary and sufficient condition to dim(G) = dim(G⊙K1).

2. Main Results

In this section we consider the metric dimension of the graph G ⊙ K1 and
characterize all graphs that attain the bound in Theorem 1.2 for the case k = 1.
Using this result, we complete the characterization for all integer numbers k ≥ 1.
By the following lemma, G⊙K1 has a basis consists of leaves.

Lemma 2.1. For each graph G, the graph G ⊙ K1 has a basis B such that all
members of B are of degree one.

Proof. For each vertex v ∈ V (G) let v′ be the leaf is adjacent to v in G⊙K1. It is
clear that for every x, y ∈ V (G ⊙K1), d(x, y

′) = d(x, y) + 1. Hence, if y resolves a
pair a, b of vertices of G⊙K1, then y′ resolves this pair, as well. Moreover, y does
not resolve y′ from any vertex of N(y)\{y′}, but y′ resolves y from all other vertices
of G⊙K1. Thus, if R is a resolving set for G⊙K1 such that {y, y′} ⊆ R, then R\{y}
is a resolving set for G⊙K1, too. Now let B be a basis for G⊙K1 and v1, v2, . . . , vt
be all none-leaf vertices of B. Therefore B′ = (B ∪ {v′

1
, v′

2
, . . . , v′t})\{v1, v2, . . . , vt}

is a basis for G⊙K1, and all vertices of B′ are leaves. 2

By Inequality 1.1, for each graph G we have dim(G) ≤ dim(G⊙K1). The following
theorem explain a necessary and sufficient condition to dim(G) = dim(G⊙K1).

Theorem 2.2. Let G be a graph. Then dim(G) = dim(G⊙K1) if and only if there
exists a metric basis B of G such that for each u, v ∈ V (G) \B, r(u|B)− r(v|B) 6=
(1, 1, . . . , 1).

Proof. For each vertex v ∈ V (G) let v′ be the leaf is adjacent to v in G ⊙ K1.
Let dim(G) = dim(G ⊙ K1) and B′ is a basis of G ⊙ K1. Consider B = {v ∈
V (G)|v ∈ B′ ∨ v′ ∈ B′}. If r(u|B) = r(v|B) for some u, v ∈ V (G), then there exists
a vertex b′ ∈ B′ such that d

G⊙K1
(u, b′) 6= d

G⊙K1
(v, b′) and d

G
(u, b) = d

G
(v, b). This

is impossible, because d
G⊙K1

(u, b′) = d
G
(u, b) + 1 and d

G⊙K1
(v, b′) = d

G
(v, b) + 1.

Therefore B is a basis for G. If there exist vertices u, v ∈ V (G) \ B with r(u|B) −
r(v|B) = (1, 1, . . . , 1), then r(u|B′) − r(v|B′) = (1, 1, . . . , 1). Since v /∈ B, we have
v′ /∈ B′ and r(v′|B′) − r(v|B′) = (1, 1, . . . , 1). That means r(v′|B′) = r(u|B′),
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which is a contradiction. Therefore r(u|B)− r(v|B) 6= (1, 1, . . . , 1), for every u, v ∈
V (G) \B.

For the converse, let B be a basis of G such that r(u|B)− r(v|B) 6= (1, 1, . . . , 1)
for each u, v ∈ V (G) \B. Set B′ = {v′ ∈ V (G⊙K1)|v ∈ B}. We prove that B′ is a
resolving set for G⊙K1. Let x, y ∈ V (G⊙K1) \B′. If both of x, y are in V (G) or
both of them are not in V (G), then r(x|B′) 6= r(y|B′), because B is a basis of G.
Now let x ∈ V (G) and y ∈ V (G ⊙K1) \ V (G) and r(x|B′) = r(y|B′). Hence y is
the only leaf of a vertex z ∈ V (G) and r(y|B′) − r(z|B′) = (1, 1, . . . , 1). Therefore
r(x|B′) − r(z|B′) = (1, 1, . . . , 1). By definition of B′, we have r(x|B) − r(z|B) =
(1, 1, . . . , 1). Note that x, y /∈ B′ yields x, z /∈ B, a contradiction. Therefore B′ is a
resolving set for G ⊙K1 of size dim(G). This means dim(G ⊙K1) ≤ dim(G) and
Inequality 1.1 implies dim(G⊙K1) = dim(G). 2

The following upper bound is useful to study of metric dimension of G⊙K1.

Theorem 2.3. Let G be a graph of order n and diameter D. Then dim(G⊙K1) ≤
n−D + 1.

Proof. Assume that for each v ∈ V (G), v′ is the leaf is adjacent to v in G ⊙ K1.
Let (v0, v1, . . . , vD

) be a shortest path of length D in G. If W = {v′
0
, v′

D
}, then

r(vi|W ) = (i+1, D−i+1), 0 ≤ i ≤ D and r(v′i|W ) = (i+2, D−i+2), 1 ≤ i ≤ D−1.
We prove thatW resolves the set {v0, v1, . . . , vD

, v′
0
, v′

1
, . . . , v′

D
}. It is easy to see that

for i 6= j, r(vi|W ) 6= r(vj |W ) and r(v′i|W ) 6= r(v′j |W ). On the hand, if r(vi|W ) =
r(v′j |W ) for some i, j, then (i+1, D− i+1) = (j+2, D− j+2). The equality of the
first entry implies that j = i − 1 and the equality of the second entry implies that
i = j−1, which is impossible. Now let W1 = V (G⊙K1)\(V (G)∪{v′

1
, v′

2
, . . . , v′

D−1
}).

It is clear that |W1| = n − D + 1. To complete the proof, it is sufficient to prove
that W1 is a resolving set for G ⊙ K1. Note that vi, D + 1 ≤ i ≤ n − 1, is the
unique vertex in G ⊙K1 with distance 1 to v′i. That means W1 is a resolving set
for G⊙K1, since W ⊆ W1 resolves {v0, v1, . . . , vD

, v′
0
, v′

1
, . . . , v′

D
}. 2

It is easy to see that upper bound in Theorem 2.3 is tight for G = Pn. The following
lemma gives a property of graphs that attain the bound in Theorem 2.3.

Lemma 2.4. Let G be a graph of order n, diameter D and dim(G⊙K1) = n−D+1.
If P is a shortest path of length D in G, then each vertex of G \ P is adjacent to a
vertex of P .

Proof. Assume that for each v ∈ V (G), v′ is the leaf is adjacent to v in G⊙K1. Let
P = (v0, v1, . . . , vD

) be a shortest path of length D in G. Suppose, on the contrary,
there exists a vertex x ∈ V (G \ P ) with no adjacent in P . Since G is connected, x
has a neighbour y /∈ V (P ). Let

V = {v1, v2, . . . , vD−1
, y}, U = {v′

1
, v′

2
, . . . , v′

D−1
, y′}.

We prove that W = V (G ⊙ K1) \ (V (G) ∪ U) is a resolving set for G ⊙K1. It is
clear that for each v ∈ V (G) \V , v′ ∈ W and v is the unique vertex of G⊙K1 with
d(v, v′) = 1. Hence for each v ∈ V (G) \ V , r(v|W ) is unique. That means, W is a
resolving set for G if W resolves U ∪ V . Note that, y is the unique vertex of U ∪ V



Metric Dimension of Corona Product with K1 127

with distance 2 to x′. Since x′ ∈ W , r(y|W ) is unique. On the other hand, for each
i, 1 ≤ i ≤ D − 1,

r(vi|{v
′

0
, v′

D
} = (i+ 1, D − i+ 1), r(v′i|{v

′

0
, v′

D
} = (i+ 2, D − i+ 2).

Hence for each i, j, 1 ≤ i 6= j ≤ D− 1, r(vi|W ) 6= r(vj |W ) and r(v′i|W ) 6= r(v′j |W ).
Also, if r(vi|W ) = r(v′j |W ) for some i, j, 1 ≤ i, j ≤ D − 1, then r(vi|{v′0, v

′

D
} =

r(v′j |{v
′

0
, v′

D
}. Thus, i+1 = j+2 and D−i+1 = D−j+1 these imply i = j+1 and

j = i + 1, which is impossible. Therefore to complete the prove, we need to prove
that r(y′|W ) is different from the metric representations of vertices in U∪V \{y, y′}.
Since x, y are adjacent, d(y′, x′) = 3. If there exists a vertex t ∈ U ∪ V \ {y, y′}
with r(y′|W ) = r(t|W ) then d(t, x′) = 3. This means t is adjacent to y. Otherwise,
d(t, x′) ≥ 4, because x has no neighbour in V (P ). Thus t ∈ V , say t = vi, for some
i, 1 ≤ i ≤ D − 1. Hence,

r(y′|{v′
0
, v′

D
} = r(vi|{v

′

0
, v′

D
} = (i + 1, D − i+ 1).

That yields, d(y, v′
0
) = d(y′, v′

0
) − 1 = i and d(y, v′

D
) = d(y′, v′

D
) − 1 = D − i.

Therefore,
D + 2 = d(v′

0
, v′

D
) ≤ d(v′

0
, y) + d(y, v′

D
) = D.

Therefore W is a resolving set for G⊙K1. That is, dim(G ⊙K1) ≤ |W | = n−D.
Which is a contradiction, therefore x has a neighbour in V (P ). 2

The next lemma characterizes all graphs that attain the bound in Theorem 1.2 for
the case k = 1.
Lemma 2.5. Let G be a graph of order n ≥ 2. Then dim(G ⊙K1) = n− 1 if and
only if G = Kn or G = K1,n−1.

Proof. Assume that for each v ∈ V (G), v′ is the leaf is adjacent to v in G ⊙ K1.
First let dim(G ⊙K1) = n − 1. If the diameter of G is D, then by Theorem 2.3,
n − 1 ≤ n − D + 1, that is D ≤ 2. D = 1 implies G = Kn. Now consider D = 2
we claim that G = K1,n−1. Let P = (v0, v1, v2) be a shortest path of length D in
G. It is enough to consider the case P 6= G, otherwise G = K1,2. Assume that
x /∈ V (P ), by Lemma 2.4, x has some neighbours in P . If x is adjacent to a leaf
of P , say v2, then let W = V (G⊙K1) \ V (G) ∪ {v′

1
, v′

2
}. It is easy to see that the

metric representation of every vertex in V (G⊙K1) \ {v1, v2, v′1, v
′

2
} with respect to

W is unique. Also, we have {v′
0
, x′} ⊆ W and

r(v1|{v
′

0
, x′}) = (2, r), r(v′

1
|{v′

0
, x′}) = (3, r + 1),

r(v2|{v
′

0
, x′}) = (3, 2), r(v′

2
|{v′

0
, x′}) = (4, 3),

where r ∈ {2, 3}. Therefore W is a resolving set for G of cardinality n − 2, this
contradiction implies that no leaf of P is adjacent to any vertex of V (G) \ V (P )
and by Lemma 2.4, v1 is adjacent to all vertices in V (G) \ V (P ). To prove our
claim, we need to prove that V (G) \ V (P ) is an independent set of vertices. If
a, b ∈ V (G) \ V (P ) are adjacent, then let W = V (G ⊙K1) \ V (G) ∪ {v′

1
, b′}. It is
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easy to see that the metric representation of every vertex in V (G⊙K1)\{v1, b, v′1, b
′}

with respect to W is unique. Also, we have {v′
0
, a′} ⊆ W and

r(v1|{v
′

0
, a′}) = (2, 2), r(v′

1
|{v′

0
, a′}) = (3, 3), r(b|{v′

0
, a′}) = (3, 2), r(b′|{v′

0
, a′}) = (4, 3).

Therefore W is a resolving set for G of cardinality n− 2. This contradiction yields
V (G) \ V (P ) is an independent set and G = K1,n−1.

Conversely, if G = Kn, then by Inequality 1.1, n − 1 ≤ dim(G ⊙ K1) and by
Theorem 1.2 dim(G ⊙K1) ≤ n − 1. Therefore dim(G ⊙K1) = n − 1. In the case
G = K1,n−1, G is a tree with σ(G) = n−1 and by Theorem 1.3, dim(G⊙K1) = n−1.
2

By Theorem 1.1, if G = Ks,t(s, t ≥ 1), G = Ks ∨ Kt(s ≥ 1, t ≥ 2), or G =
Ks ∨ (Kt ∪K1)(s, t ≥ 1), then dim(G) = n(G)− 2. Inequality 1.1 and Theorem 1.2
imply that for all these graphs n(G)− 2 ≤ dim(G⊙K1) ≤ n(G)− 1. On the other
hand by Theorem 1.3 the star graph K1,n−1 is the only graph among these with
dim(K1,n−1 ⊙K1) = n− 1. Therefore we have the following corollary.

Corollary 2.6. If G = Ks,t(s, t > 1), G = Ks ∨ Kt(s ≥ 1, t ≥ 2), or G =
Ks ∨ (Kt ∪K1)(s, t ≥ 1), then dim(G⊙K1) = n(G)− 2.

The following theorem completes the characterization of all graphs that attain the
bound in Theorem 1.2.

Theorem 2.7. Let G be a graph of order n ≥ 2. Then dim(Gk) = 2k−1n− 1 if and
only if k = 1 and G = Kn or G = K1,n−1.

Proof. By Lemma 2.5, it is sufficient to prove that the equality is not hold for the
case k ≥ 2. Suppose on the contrary that equality is hold for some integer k ≥ 2.
Let H = G⊙k−1 K1. Then G⊙k K1 = H ⊙K1 and the order of H is 2k−1n. Since
equality is hold forG⊙kK1, we have dim(H⊙K1) = n(H)−1. Hence, by Lemma 2.5,
H is a complete graph or a star graph. Since H has some vertices of degree 1, H is
not a complete graph. Therefore H must be a star graph with n(H)− 1 leaves. On
the other hand, H has 2k−2n leaves. It implies that 2k−1n−1 = n(H)−1 = 2k−2n,
which is a contradiction. Therefore dim(G⊙k K1) = 2k−1n− 1 if and only if k = 1
and G = Kn or G = K1,n−1. 2
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