On the Metric Dimension of Corona Product of a Graph with K_{1}

Mohsen Jannesari
Department of Science, Shahreza Campus, University of Isfahan, Iran
e-mail: m.jannesari@shr.ui.ac.ir
Abstract. For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of vertices and a vertex v in a connected graph G, the k-vector

$$
r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)
$$

is called the metric representation of v with respect to W, where $d(x, y)$ is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension $\operatorname{dim}(G)$, and a resolving set of minimum cardinality is a basis of G. The corona product, $G \odot H$ of graphs G and H is obtained by taking one copy of G and $n(G)$ copies of H, and by joining each vertex of the i th copy of H to the i th vertex of G. In this paper, we obtain bounds for $\operatorname{dim}\left(G \odot K_{1}\right)$, characterize all graphs G with $\operatorname{dim}\left(G \odot K_{1}\right)=\operatorname{dim}(G)$, and prove that $\operatorname{dim}\left(G \odot K_{1}\right)=n-1$ if and only if G is the complete graph K_{n} or the star graph $K_{1, n-1}$.

1. Introduction

Throughout this paper G is a connected finite simple graph of order $n(G)$. The vertex and edge sets of G are $V(G)$ and $E(G)$, respectively. For vertices u and v in a graph G, the distance of two vertices u and v, denoted by $d_{G}(u, v)$, is the length of a shortest path between u and v in G. We write it simply $d(u, v)$ when no confusion can arise. The diameter of $G, D(G)$, is $\max _{u, v \in V(G)} d(u, v)$. The symbol $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ represents a path of order n, P_{n}.

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v of G, the k-vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$ is called the metric representation of v with respect to W. The set W is called a resolving set for G if distinct vertices of G have different metric representations. A resolving set W for G with minimum cardinality is called a metric basis of G, and its cardinality is the metric

[^0]dimension, $\operatorname{dim}(G)$, of G. It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider the vertices in $V(G) \backslash W$, because $w \in W$ is the unique vertex of G for which $d(w, w)=0$.

In [12], Slater introduced the idea of a resolving set and used a locating set and the location number for a resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and Melter [8] discovered the concept of the location number as well and called it the metric dimension. The concept of a resolving set has various applications in diverse areas including coin weighing problems [11], network discovery and verification [1], robot navigation [9], mastermind game [3], problems of pattern recognition and image processing [10], and combinatorial search and optimization [11]. For more results related to these concepts see $[2,3,4,6,9]$.

The join of two graphs G and $H, G \vee H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$ and joining each vertex of G to all vertices of H. Also, the disjoint union of two graphs G and $H, V(G) \cap V(H)=\emptyset$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Chartrand et al. [5] determined the metric dimension of some families of graphs such as paths, trees, and complete graphs. The following theorem gives the metric dimension of some well-known classes of graphs.

Theorem 1.1. $([5,13])$ Let G be a graph of order $n \geq 2$.
(a) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$.
(b) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$.
(c) For $n \geq 3, \operatorname{dim}\left(C_{n}\right)=2$.
(d) For $n \geq 4, \operatorname{dim}(G)=n-2$ if and only if $G=K_{s, t}(s, t \geq 1), G=K_{s} \vee \bar{K}_{t}(s \geq$ $1, t \geq 2)$, or $G=K_{s} \vee\left(K_{t} \cup K_{1}\right)(s, t \geq 1)$.

The corona product, $G \odot H$ of graphs G and H is obtained by taking one copy of G and $n(G)$ copy of H, and by joining each vertex of the i th copy of H to the i th vertex of $G, 1 \leq i \leq n(G)$. When $n(H) \geq 2$, Fernau et al. [7], showed that $\operatorname{dim}(G \odot H)$ is equal to $n(G)$ times of adjacency dimension of H. When $n(H)=1$ the problem of finding $\operatorname{dim}(G \odot H)$ is more difficult and there is a few results about it.

For each integer $k \geq 2$, Yero et al. [14], defined the graph $G \odot^{k} H$ recursively from $G \odot H$ as $G \odot \odot^{k} H=\left(G \odot{ }^{k-1} H\right) \odot H$. They proved the following theorem for the case $n(H)=1$.
Theorem 1.2. ([14]) For every connected graph G of order $n \geq 2, \operatorname{dim}\left(G \odot^{k} K_{1}\right) \leq$ $2^{k-1} n-1$.

Buczkowski et al. [2] proved that if G^{\prime} is a graph by adding a leaf to a nontrivial graph G, then

$$
\begin{equation*}
\operatorname{dim}(G) \leq \operatorname{dim}\left(G^{\prime}\right) \leq \operatorname{dim}(G)+1 \tag{1.1}
\end{equation*}
$$

This implies $\operatorname{dim}(G) \leq \operatorname{dim}\left(G \odot K_{1}\right)$. Yero et al. [14] compute $\operatorname{dim}\left(G \odot K_{1}\right)$, when G is a tree.

Theorem 1.3. ([14]) If T is a tree, then the metric dimension of $T \odot K_{1}$ is equal to the number of leaves of T.

In this paper, we focus on the metric dimension of $G \odot K_{1}$. Clearly, $G \odot K_{1}$ is a path if and only $G \in\left\{K_{1}, K_{2}\right\}$. Hence, for graphs G of order greater than 2 we have $2 \leq \operatorname{dim}\left(G \odot K_{1}\right) \leq n(G)-1$. We obtain an upper bound for $\operatorname{dim}\left(G \odot K_{1}\right)$, in terms of order and diameter of G. Using this bound we characterize all graphs G with $\operatorname{dim}\left(G \odot K_{1}\right)=n(G)-1$. Then we characterize all graphs that attain the bound in Theorem 1.2. In fact we prove $\operatorname{dim}\left(G \odot^{k} K_{1}\right)=2^{k-1} n-1$ if and only if $k=1$ and G is complete graph K_{n} or G is star graph $K_{1, n-1}$. Also, we give a necessary and sufficient condition to $\operatorname{dim}(G)=\operatorname{dim}\left(G \odot K_{1}\right)$.

2. Main Results

In this section we consider the metric dimension of the graph $G \odot K_{1}$ and characterize all graphs that attain the bound in Theorem 1.2 for the case $k=1$. Using this result, we complete the characterization for all integer numbers $k \geq 1$. By the following lemma, $G \odot K_{1}$ has a basis consists of leaves.

Lemma 2.1. For each graph G, the graph $G \odot K_{1}$ has a basis B such that all members of B are of degree one.
Proof. For each vertex $v \in V(G)$ let v^{\prime} be the leaf is adjacent to v in $G \odot K_{1}$. It is clear that for every $x, y \in V\left(G \odot K_{1}\right), d\left(x, y^{\prime}\right)=d(x, y)+1$. Hence, if y resolves a pair a, b of vertices of $G \odot K_{1}$, then y^{\prime} resolves this pair, as well. Moreover, y does not resolve y^{\prime} from any vertex of $N(y) \backslash\left\{y^{\prime}\right\}$, but y^{\prime} resolves y from all other vertices of $G \odot K_{1}$. Thus, if R is a resolving set for $G \odot K_{1}$ such that $\left\{y, y^{\prime}\right\} \subseteq R$, then $R \backslash\{y\}$ is a resolving set for $G \odot K_{1}$, too. Now let B be a basis for $G \odot K_{1}$ and $v_{1}, v_{2}, \ldots, v_{t}$ be all none-leaf vertices of B. Therefore $B^{\prime}=\left(B \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t}^{\prime}\right\}\right) \backslash\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ is a basis for $G \odot K_{1}$, and all vertices of B^{\prime} are leaves.
By Inequality 1.1, for each graph G we have $\operatorname{dim}(G) \leq \operatorname{dim}\left(G \odot K_{1}\right)$. The following theorem explain a necessary and sufficient condition to $\operatorname{dim}(G)=\operatorname{dim}\left(G \odot K_{1}\right)$.
Theorem 2.2. Let G be a graph. Then $\operatorname{dim}(G)=\operatorname{dim}\left(G \odot K_{1}\right)$ if and only if there exists a metric basis B of G such that for each $u, v \in V(G) \backslash B, r(u \mid B)-r(v \mid B) \neq$ $(1,1, \ldots, 1)$.
Proof. For each vertex $v \in V(G)$ let v^{\prime} be the leaf is adjacent to v in $G \odot K_{1}$. Let $\operatorname{dim}(G)=\operatorname{dim}\left(G \odot K_{1}\right)$ and B^{\prime} is a basis of $G \odot K_{1}$. Consider $B=\{v \in$ $\left.V(G) \mid v \in B^{\prime} \vee v^{\prime} \in B^{\prime}\right\}$. If $r(u \mid B)=r(v \mid B)$ for some $u, v \in V(G)$, then there exists a vertex $b^{\prime} \in B^{\prime}$ such that $d_{G \odot K_{1}}\left(u, b^{\prime}\right) \neq d_{G \odot K_{1}}\left(v, b^{\prime}\right)$ and $d_{G}(u, b)=d_{G}(v, b)$. This is impossible, because $d_{G \odot K_{1}}\left(u, b^{\prime}\right)=d_{G}(u, b)+1$ and $d_{G \odot K_{1}}\left(v, b^{\prime}\right)=d_{G}(v, b)+1$. Therefore B is a basis for G. If there exist vertices $u, v \in V(G) \backslash B$ with $r(u \mid B)-$ $r(v \mid B)=(1,1, \ldots, 1)$, then $r\left(u \mid B^{\prime}\right)-r\left(v \mid B^{\prime}\right)=(1,1, \ldots, 1)$. Since $v \notin B$, we have $v^{\prime} \notin B^{\prime}$ and $r\left(v^{\prime} \mid B^{\prime}\right)-r\left(v \mid B^{\prime}\right)=(1,1, \ldots, 1)$. That means $r\left(v^{\prime} \mid B^{\prime}\right)=r\left(u \mid B^{\prime}\right)$,
which is a contradiction. Therefore $r(u \mid B)-r(v \mid B) \neq(1,1, \ldots, 1)$, for every $u, v \in$ $V(G) \backslash B$.

For the converse, let B be a basis of G such that $r(u \mid B)-r(v \mid B) \neq(1,1, \ldots, 1)$ for each $u, v \in V(G) \backslash B$. Set $B^{\prime}=\left\{v^{\prime} \in V\left(G \odot K_{1}\right) \mid v \in B\right\}$. We prove that B^{\prime} is a resolving set for $G \odot K_{1}$. Let $x, y \in V\left(G \odot K_{1}\right) \backslash B^{\prime}$. If both of x, y are in $V(G)$ or both of them are not in $V(G)$, then $r\left(x \mid B^{\prime}\right) \neq r\left(y \mid B^{\prime}\right)$, because B is a basis of G. Now let $x \in V(G)$ and $y \in V\left(G \odot K_{1}\right) \backslash V(G)$ and $r\left(x \mid B^{\prime}\right)=r\left(y \mid B^{\prime}\right)$. Hence y is the only leaf of a vertex $z \in V(G)$ and $r\left(y \mid B^{\prime}\right)-r\left(z \mid B^{\prime}\right)=(1,1, \ldots, 1)$. Therefore $r\left(x \mid B^{\prime}\right)-r\left(z \mid B^{\prime}\right)=(1,1, \ldots, 1)$. By definition of B^{\prime}, we have $r(x \mid B)-r(z \mid B)=$ $(1,1, \ldots, 1)$. Note that $x, y \notin B^{\prime}$ yields $x, z \notin B$, a contradiction. Therefore B^{\prime} is a resolving set for $G \odot K_{1}$ of size $\operatorname{dim}(G)$. This means $\operatorname{dim}\left(G \odot K_{1}\right) \leq \operatorname{dim}(G)$ and Inequality 1.1 implies $\operatorname{dim}\left(G \odot K_{1}\right)=\operatorname{dim}(G)$.
The following upper bound is useful to study of metric dimension of $G \odot K_{1}$.
Theorem 2.3. Let G be a graph of order n and diameter D. Then $\operatorname{dim}\left(G \odot K_{1}\right) \leq$ $n-D+1$.
Proof. Assume that for each $v \in V(G), v^{\prime}$ is the leaf is adjacent to v in $G \odot K_{1}$. Let $\left(v_{0}, v_{1}, \ldots, v_{D}\right)$ be a shortest path of length D in G. If $W=\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}$, then $r\left(v_{i} \mid W\right)=(i+1, D-i+1), 0 \leq i \leq D$ and $r\left(v_{i}^{\prime} \mid W\right)=(i+2, D-i+2), 1 \leq i \leq D-1$. We prove that W resolves the set $\left\{v_{0}, v_{1}, \ldots, v_{D}, v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{D}^{\prime}\right\}$. It is easy to see that for $i \neq j, r\left(v_{i} \mid W\right) \neq r\left(v_{j} \mid W\right)$ and $r\left(v_{i}^{\prime} \mid W\right) \neq r\left(v_{j}^{\prime} \mid W\right)$. On the hand, if $r\left(v_{i} \mid W\right)=$ $r\left(v_{j}^{\prime} \mid W\right)$ for some i, j, then $(i+1, D-i+1)=(j+2, D-j+2)$. The equality of the first entry implies that $j=i-1$ and the equality of the second entry implies that $i=j-1$, which is impossible. Now let $W_{1}=V\left(G \odot K_{1}\right) \backslash\left(V(G) \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{D-1}^{\prime}\right\}\right)$. It is clear that $\left|W_{1}\right|=n-D+1$. To complete the proof, it is sufficient to prove that W_{1} is a resolving set for $G \odot K_{1}$. Note that $v_{i}, D+1 \leq i \leq n-1$, is the unique vertex in $G \odot K_{1}$ with distance 1 to v_{i}^{\prime}. That means W_{1} is a resolving set for $G \odot K_{1}$, since $W \subseteq W_{1}$ resolves $\left\{v_{0}, v_{1}, \ldots, v_{D}, v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{D}^{\prime}\right\}$.
It is easy to see that upper bound in Theorem 2.3 is tight for $G \xlongequal[=]{=} P_{n}$. The following lemma gives a property of graphs that attain the bound in Theorem 2.3.
Lemma 2.4. Let G be a graph of order n, diameter D and $\operatorname{dim}\left(G \odot K_{1}\right)=n-D+1$. If P is a shortest path of length D in G, then each vertex of $G \backslash P$ is adjacent to a vertex of P.
Proof. Assume that for each $v \in V(G), v^{\prime}$ is the leaf is adjacent to v in $G \odot K_{1}$. Let $P=\left(v_{0}, v_{1}, \ldots, v_{D}\right)$ be a shortest path of length D in G. Suppose, on the contrary, there exists a vertex $x \in V(G \backslash P)$ with no adjacent in P. Since G is connected, x has a neighbour $y \notin V(P)$. Let

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{D-1}, y\right\}, \quad U=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{D-1}^{\prime}, y^{\prime}\right\}
$$

We prove that $W=V\left(G \odot K_{1}\right) \backslash(V(G) \cup U)$ is a resolving set for $G \odot K_{1}$. It is clear that for each $v \in V(G) \backslash V, v^{\prime} \in W$ and v is the unique vertex of $G \odot K_{1}$ with $d\left(v, v^{\prime}\right)=1$. Hence for each $v \in V(G) \backslash V, r(v \mid W)$ is unique. That means, W is a resolving set for G if W resolves $U \cup V$. Note that, y is the unique vertex of $U \cup V$
with distance 2 to x^{\prime}. Since $x^{\prime} \in W, r(y \mid W)$ is unique. On the other hand, for each $i, 1 \leq i \leq D-1$,

$$
r\left(v_{i} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}=(i+1, D-i+1), \quad r\left(v_{i}^{\prime} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}=(i+2, D-i+2)\right.\right.
$$

Hence for each $i, j, 1 \leq i \neq j \leq D-1, r\left(v_{i} \mid W\right) \neq r\left(v_{j} \mid W\right)$ and $r\left(v_{i}^{\prime} \mid W\right) \neq r\left(v_{j}^{\prime} \mid W\right)$. Also, if $r\left(v_{i} \mid W\right)=r\left(v_{j}^{\prime} \mid W\right)$ for some $i, j, 1 \leq i, j \leq D-1$, then $r\left(v_{i} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}=\right.$ $r\left(v_{j}^{\prime} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}\right.$. Thus, $i+1=j+2$ and $D-i+1=D-j+1$ these imply $i=j+1$ and $j=i+1$, which is impossible. Therefore to complete the prove, we need to prove that $r\left(y^{\prime} \mid W\right)$ is different from the metric representations of vertices in $U \cup V \backslash\left\{y, y^{\prime}\right\}$. Since x, y are adjacent, $d\left(y^{\prime}, x^{\prime}\right)=3$. If there exists a vertex $t \in U \cup V \backslash\left\{y, y^{\prime}\right\}$ with $r\left(y^{\prime} \mid W\right)=r(t \mid W)$ then $d\left(t, x^{\prime}\right)=3$. This means t is adjacent to y. Otherwise, $d\left(t, x^{\prime}\right) \geq 4$, because x has no neighbour in $V(P)$. Thus $t \in V$, say $t=v_{i}$, for some $i, 1 \leq i \leq D-1$. Hence,

$$
r\left(y^{\prime} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}=r\left(v_{i} \mid\left\{v_{0}^{\prime}, v_{D}^{\prime}\right\}=(i+1, D-i+1) .\right.\right.
$$

That yields, $d\left(y, v_{0}^{\prime}\right)=d\left(y^{\prime}, v_{0}^{\prime}\right)-1=i$ and $d\left(y, v_{D}^{\prime}\right)=d\left(y^{\prime}, v_{D}^{\prime}\right)-1=D-i$. Therefore,

$$
D+2=d\left(v_{0}^{\prime}, v_{D}^{\prime}\right) \leq d\left(v_{0}^{\prime}, y\right)+d\left(y, v_{D}^{\prime}\right)=D
$$

Therefore W is a resolving set for $G \odot K_{1}$. That is, $\operatorname{dim}\left(G \odot K_{1}\right) \leq|W|=n-D$. Which is a contradiction, therefore x has a neighbour in $V(P)$.
The next lemma characterizes all graphs that attain the bound in Theorem 1.2 for the case $k=1$.
Lemma 2.5. Let G be a graph of order $n \geq 2$. Then $\operatorname{dim}\left(G \odot K_{1}\right)=n-1$ if and only if $G=K_{n}$ or $G=K_{1, n-1}$.
Proof. Assume that for each $v \in V(G), v^{\prime}$ is the leaf is adjacent to v in $G \odot K_{1}$. First let $\operatorname{dim}\left(G \odot K_{1}\right)=n-1$. If the diameter of G is D, then by Theorem 2.3, $n-1 \leq n-D+1$, that is $D \leq 2$. $D=1$ implies $G=K_{n}$. Now consider $D=2$ we claim that $G=K_{1, n-1}$. Let $P=\left(v_{0}, v_{1}, v_{2}\right)$ be a shortest path of length D in G. It is enough to consider the case $P \neq G$, otherwise $G=K_{1,2}$. Assume that $x \notin V(P)$, by Lemma 2.4, x has some neighbours in P. If x is adjacent to a leaf of P, say v_{2}, then let $W=V\left(G \odot K_{1}\right) \backslash V(G) \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$. It is easy to see that the metric representation of every vertex in $V\left(G \odot K_{1}\right) \backslash\left\{v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right\}$ with respect to W is unique. Also, we have $\left\{v_{0}^{\prime}, x^{\prime}\right\} \subseteq W$ and

$$
\begin{gathered}
r\left(v_{1} \mid\left\{v_{0}^{\prime}, x^{\prime}\right\}\right)=(2, r), \quad r\left(v_{1}^{\prime} \mid\left\{v_{0}^{\prime}, x^{\prime}\right\}\right)=(3, r+1), \\
r\left(v_{2} \mid\left\{v_{0}^{\prime}, x^{\prime}\right\}\right)=(3,2), \quad r\left(v_{2}^{\prime} \mid\left\{v_{0}^{\prime}, x^{\prime}\right\}\right)=(4,3),
\end{gathered}
$$

where $r \in\{2,3\}$. Therefore W is a resolving set for G of cardinality $n-2$, this contradiction implies that no leaf of P is adjacent to any vertex of $V(G) \backslash V(P)$ and by Lemma 2.4, v_{1} is adjacent to all vertices in $V(G) \backslash V(P)$. To prove our claim, we need to prove that $V(G) \backslash V(P)$ is an independent set of vertices. If $a, b \in V(G) \backslash V(P)$ are adjacent, then let $W=V\left(G \odot K_{1}\right) \backslash V(G) \cup\left\{v_{1}^{\prime}, b^{\prime}\right\}$. It is
easy to see that the metric representation of every vertex in $V\left(G \odot K_{1}\right) \backslash\left\{v_{1}, b, v_{1}^{\prime}, b^{\prime}\right\}$ with respect to W is unique. Also, we have $\left\{v_{0}^{\prime}, a^{\prime}\right\} \subseteq W$ and
$r\left(v_{1} \mid\left\{v_{0}^{\prime}, a^{\prime}\right\}\right)=(2,2), r\left(v_{1}^{\prime} \mid\left\{v_{0}^{\prime}, a^{\prime}\right\}\right)=(3,3), r\left(b \mid\left\{v_{0}^{\prime}, a^{\prime}\right\}\right)=(3,2), r\left(b^{\prime} \mid\left\{v_{0}^{\prime}, a^{\prime}\right\}\right)=(4,3)$.
Therefore W is a resolving set for G of cardinality $n-2$. This contradiction yields $V(G) \backslash V(P)$ is an independent set and $G=K_{1, n-1}$.

Conversely, if $G=K_{n}$, then by Inequality 1.1, $n-1 \leq \operatorname{dim}\left(G \odot K_{1}\right)$ and by Theorem $1.2 \operatorname{dim}\left(G \odot K_{1}\right) \leq n-1$. Therefore $\operatorname{dim}\left(G \odot K_{1}\right)=n-1$. In the case $G=K_{1, n-1}, G$ is a tree with $\sigma(G)=n-1$ and by Theorem $1.3, \operatorname{dim}\left(G \odot K_{1}\right)=n-1$.

By Theorem 1.1, if $G=K_{s, t}(s, t \geq 1), G=K_{s} \vee \bar{K}_{t}(s \geq 1, t \geq 2)$, or $G=$ $K_{s} \vee\left(K_{t} \cup K_{1}\right)(s, t \geq 1)$, then $\operatorname{dim}(G)=n(G)-2$. Inequality 1.1 and Theorem 1.2 imply that for all these graphs $n(G)-2 \leq \operatorname{dim}\left(G \odot K_{1}\right) \leq n(G)-1$. On the other hand by Theorem 1.3 the star graph $K_{1, n-1}$ is the only graph among these with $\operatorname{dim}\left(K_{1, n-1} \odot K_{1}\right)=n-1$. Therefore we have the following corollary.
Corollary 2.6. If $G=K_{s, t}(s, t>1), G=K_{s} \vee \bar{K}_{t}(s \geq 1, t \geq 2)$, or $G=$ $K_{s} \vee\left(K_{t} \cup K_{1}\right)(s, t \geq 1)$, then $\operatorname{dim}\left(G \odot K_{1}\right)=n(G)-2$.
The following theorem completes the characterization of all graphs that attain the bound in Theorem 1.2.
Theorem 2.7. Let G be a graph of order $n \geq 2$. Then $\operatorname{dim}\left(G_{k}\right)=2^{k-1} n-1$ if and only if $k=1$ and $G=K_{n}$ or $G=K_{1, n-1}$.
Proof. By Lemma 2.5, it is sufficient to prove that the equality is not hold for the case $k \geq 2$. Suppose on the contrary that equality is hold for some integer $k \geq 2$. Let $H=G \odot^{k-1} K_{1}$. Then $G \odot^{k} K_{1}=H \odot K_{1}$ and the order of H is $2^{k-1} n$. Since equality is hold for $G \odot^{k} K_{1}$, we have $\operatorname{dim}\left(H \odot K_{1}\right)=n(H)-1$. Hence, by Lemma 2.5, H is a complete graph or a star graph. Since H has some vertices of degree $1, H$ is not a complete graph. Therefore H must be a star graph with $n(H)-1$ leaves. On the other hand, H has $2^{k-2} n$ leaves. It implies that $2^{k-1} n-1=n(H)-1=2^{k-2} n$, which is a contradiction. Therefore $\operatorname{dim}\left(G \odot^{k} K_{1}\right)=2^{k-1} n-1$ if and only if $k=1$ and $G=K_{n}$ or $G=K_{1, n-1}$.

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak and L. S. Ram, Network dicovery and verification, IEEE J. Sel. Areas Commun., 24(12)(2006) 2168-2181.
[2] P. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hungar. 46(1)(2003), 9-15.
[3] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21(2)(2007) 423-441.
[4] G. G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin., 88(2008) 349-366.
[5] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105(2000) 99-113.
[6] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160(2003), 47-68.
[7] H. Fernau and J. A. Rodriguez-Velazquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: Combinatorial and computational results, Discrete Appl. Math., 236(2018) 183-202.
[8] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2(1976) 191-195.
[9] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70(3)(1996) 217-229.
[10] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Graph. Image Process., 25(1984) 113-121.
[11] A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2)(2004) 383-393.
[12] P. J. Slater, Leaves of trees, Congr. Numer., 14(1975) 549-559.
[13] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22(1988) 445-455.
[14] I. G. Yero, D. Kuziak and J. A. Rodriguez-velaquez, On the metric dimension of corona product graphs, Comput. Math. Appl., 61(2011) 2793-2798.

[^0]: Received November 17, 2021; revised June 24, 2022; accepted June 24, 2022.
 2020 Mathematics Subject Classification: 05C12.
 Key words and phrases: Resolving set, Metric dimension, Metric basis, Corona product.

