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ABSTRACT. For an ordered set W = {w1,ws,...,wi} of vertices and a vertex v in a
connected graph G, the k-vector

r(v|W) = (d(v,w1), d(v,w2),...,dv,w))

is called the metric representation of v with respect to W, where d(z,y) is the distance
between the vertices z and y. A set W is called a resolving set for G if distinct vertices
of G have distinct metric representations with respect to W. The minimum cardinality
of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum
cardinality is a basis of G. The corona product, G ® H of graphs GG and H is obtained by
taking one copy of G and n(G) copies of H, and by joining each vertex of the ith copy of
H to the ith vertex of G. In this paper, we obtain bounds for dim(G ® K1), characterize
all graphs G with dim(G ® K1) = dim(G), and prove that dim(G ® K1) = n — 1 if and
only if G is the complete graph K, or the star graph Ki n—1.

1. Introduction

Throughout this paper G is a connected finite simple graph of order n(G). The
vertex and edge sets of G are V(G) and E(G), respectively. For vertices u and
v in a graph G, the distance of two vertices u and v, denoted by dg(u,v), is the
length of a shortest path between u and v in G. We write it simply d(u, v) when no
confusion can arise. The diameter of G, D(G), is max d(u,v). The symbol

wvEV (G)
(v1,va,...,v,) represents a path of order n, P,.

For an ordered set W = {wy,ws,...,wp} € V(G) and a vertex v of G, the
k-vector r(v|W) = (d(v,w1),d(v,ws),...,d(v,wg)) is called the metric represen-

tation of v with respect to W. The set W is called a resolving set for G if distinct
vertices of G have different metric representations. A resolving set W for G with
minimum cardinality is called a metric basis of G, and its cardinality is the metric
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dimension, dim(G), of G. It is obvious that to see whether a given set W is a
resolving set, it is sufficient to consider the vertices in V(G)\W, because w € W is
the unique vertex of G for which d(w,w) = 0.

In [12], Slater introduced the idea of a resolving set and used a locating set
and the location number for a resolving set and the metric dimension, respectively.
He described the usefulness of these concepts when working with U.S. Sonar and
Coast Guard Loran stations. Independently, Harary and Melter [8] discovered the
concept of the location number as well and called it the metric dimension. The
concept of a resolving set has various applications in diverse areas including coin
weighing problems [11], network discovery and verification [1], robot navigation [9],
mastermind game [3], problems of pattern recognition and image processing [10],
and combinatorial search and optimization [11]. For more results related to these
concepts see [2, 3, 4, 6, 9].

The join of two graphs G and H, GV H is the graph with vertex set V(G)UV (H)
and edge set F(G) U E(H) and joining each vertex of G to all vertices of H. Also,
the disjoint union of two graphs G and H, V(G) N V(H) = 0, is the graph with
vertex set V(G)UV (H) and edge set E(G)UFE(H). Chartrand et al. [5] determined
the metric dimension of some families of graphs such as paths, trees, and complete
graphs. The following theorem gives the metric dimension of some well-known
classes of graphs.

Theorem 1.1. ([5, 13]) Let G be a graph of order n > 2.

(a) dim(G) =1 if and only if G = P,.

(b) dim(G) = n — 1 if and only if G = K,,.

(¢) Forn > 3, dim(C,,) = 2.

(d) Forn > 4, dim(G) = n—2 if and only if G = K 4(s,t > 1),G = K;VK (s >
1,t>2), or G=KsV (K UKq)(s,t >1).

The corona product, G ® H of graphs G and H is obtained by taking one copy of
G and n(G) copy of H, and by joining each vertex of the ith copy of H to the
ith vertex of G, 1 < i < n(G). When n(H) > 2, Fernau et al. [7], showed that
dim(G ® H) is equal to n(G) times of adjacency dimension of H. When n(H) =1
the problem of finding dim(G ® H) is more difficult and there is a few results about
it.

For each integer k > 2, Yero et al. [14], defined the graph G ©* H recursively
from G® H as GOF H = (G ©*~!' H) ® H. They proved the following theorem for
the case n(H) = 1.

Theorem 1.2. ([14]) For every connected graph G of order n > 2, dim(G oF K;) <
2k=1n — 1.

Buczkowski et al. [2] proved that if G’ is a graph by adding a leaf to a nontrivial
graph G, then

(1.1) dim(G) < dim(G’) < dim(G) + 1
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This implies dim(G) < dim(G @ K7). Yero et al. [14] compute dim(G ® K1), when
G is a tree.

Theorem 1.3. ([14]) If T is a tree, then the metric dimension of ' ® K7 is equal
to the number of leaves of T'.

In this paper, we focus on the metric dimension of G ® K;. Clearly, G ® K is
a path if and only G € {K;, K2}. Hence, for graphs G of order greater than 2 we
have 2 < dim(G ® K;) < n(G) — 1. We obtain an upper bound for dim(G @ K3),
in terms of order and diameter of G. Using this bound we characterize all graphs
G with dim(G ® K1) = n(G) — 1. Then we characterize all graphs that attain the
bound in Theorem 1.2. In fact we prove dim(G ©F K;) = 2¥71n — 1 if and only
if k =1 and G is complete graph K,, or G is star graph K; ,_;. Also, we give a
necessary and sufficient condition to dim(G) = dim(G @ K7).

2. Main Results

In this section we consider the metric dimension of the graph G ® K; and
characterize all graphs that attain the bound in Theorem 1.2 for the case k = 1.
Using this result, we complete the characterization for all integer numbers k£ > 1.
By the following lemma, G ® K; has a basis consists of leaves.

Lemma 2.1. For each graph G, the graph G ©® K1 has a basis B such that all
members of B are of degree one.

Proof. For each vertex v € V(G) let v’ be the leaf is adjacent to v in G ® K. It is
clear that for every =,y € V(G © K1), d(z,y") = d(z,y) + 1. Hence, if y resolves a
pair a, b of vertices of G ® K7, then 4’ resolves this pair, as well. Moreover, y does
not resolve y’ from any vertex of N(y)\{y'}, but 3’ resolves y from all other vertices
of GO K;. Thus, if R is a resolving set for G® K such that {y,y'} C R, then R\{y}
is a resolving set for G ® K1, too. Now let B be a basis for G® K7 and vy, va, ..., v
be all none-leaf vertices of B. Therefore B’ = (B U {v], v, ..., v;})\{v1,v2,..., v}
is a basis for G ® K1, and all vertices of B’ are leaves. O
By Inequality 1.1, for each graph G we have dim(G) < dim(G ® K1). The following
theorem explain a necessary and sufficient condition to dim(G) = dim(G ® Ki).

Theorem 2.2. Let G be a graph. Then dim(G) = dim(G @ K1) if and only if there
exists a metric basis B of G such that for each u,v € V(G)\ B, r(u|B) —r(v|B) #
(1,1,...,1).

Proof. For each vertex v € V(G) let v’ be the leaf is adjacent to v in G ® Kj.
Let dim(G) = dim(G ® K;) and B’ is a basis of G ©® K;. Consider B = {v €
V(G)lv e B'Vv' € B'}. If r(u|B) = r(v|B) for some u,v € V(G), then there exists
a vertex b’ € B’ such that d . (u,b") # dg . (v,0") and d (u,b) = d (v,b). This
is impossible, because d . (u,b') = d,(u,b) + 1 and d . (v,0") = d(v,0) + 1.
Therefore B is a basis for G. If there exist vertices u,v € V(G) \ B with r(u|B) —
r(v|B) = (1,1,...,1), then 7(u|B’) — r(v|B’) = (1,1,...,1). Since v ¢ B, we have
v' ¢ B’ and r(v'|B’) — r(v|B’) = (1,1,...,1). That means r(v'|B’) = r(u|B’),
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which is a contradiction. Therefore r(u|B) —r(v|B) # (1,1,...,1), for every u,v €
V(G)\ B.

For the converse, let B be a basis of G such that r(u|B) —r(v|B) # (1,1,...,1)
for each u,v € V(G)\ B. Set B’ = {v' € V(G ® K1)|v € B}. We prove that B’ is a
resolving set for G ® K. Let o,y € V(G ® K1) \ B’. If both of z,y are in V(G) or
both of them are not in V(G), then r(z|B") # r(y|B’), because B is a basis of G.
Now let x € V(G) and y € V(G ® K1) \ V(G) and r(z|B’) = r(y|B’). Hence y is
the only leaf of a vertex z € V(G) and r(y|B’) — r(2|B’) = (1,1,...,1). Therefore
r(z|B") — r(z|B’) = (1,1,...,1). By definition of B’, we have r(z|B) — r(z|B) =
(1,1,...,1). Note that z,y ¢ B’ yields z,z ¢ B, a contradiction. Therefore B’ is a
resolving set for G ® K of size dim(G). This means dim(G ® K1) < dim(G) and
Inequality 1.1 implies dim(G ® K;) = dim(G). O
The following upper bound is useful to study of metric dimension of G ® K;.
Theorem 2.3. Let G be a graph of order n and diameter D. Then dim(G ® K;) <
n—D+1.

Proof. Assume that for each v € V(G), v/ is the leaf is adjacent to v in G ® Kj.
Let (vo,v1,...,v,) be a shortest path of length D in G. If W = {v,v] }, then
r(vi|W) = (i+1,D—i+1),0 < i< Dand r(v;|W) = (i+2,D—i4+2),1 <i< D-1.
We prove that W resolves the set {vo, v1,...,v,,v,v],...,v) }. It is easy to see that
for i # j, r(vilW) # r(v;|W) and r(vi|W) # r(v;|W). On the hand, if r(v;|W) =
r(v;|W) for some i, j, then (i+1,D —i+1) = (j+2, D —j+2). The equality of the
first entry implies that 7 = ¢ — 1 and the equality of the second entry implies that
i = j—1, which is impossible. Now let W1 = V(GO K1)\ (V(G)U{vy,v,...,v) }).
It is clear that [W1| = n — D 4+ 1. To complete the proof, it is sufficient to prove
that Wy is a resolving set for G ® K;. Note that v;; D +1 < ¢ < n — 1, is the
unique vertex in G ® K; with distance 1 to v;. That means W; is a resolving set
for G © K, since W C W resolves {vo, v1,...,v,,v0,01,. .., }. )
It is easy to see that upper bound in Theorem 2.3 is tight for G = P,,. The following
lemma gives a property of graphs that attain the bound in Theorem 2.3.

Lemma 2.4. Let G be a graph of order n, diameter D and dim(GOK1) = n—D+1.
If P is a shortest path of length D in G, then each vertex of G\ P is adjacent to a
vertex of P.

Proof. Assume that for each v € V(G), v’ is the leaf is adjacent to v in G® K. Let
P = (vg,v1,...,v,) be ashortest path of length D in G. Suppose, on the contrary,
there exists a vertex x € V(G \ P) with no adjacent in P. Since G is connected, =
has a neighbour y ¢ V(P). Let

V ={vi,ve,...,v,_,,y}, U= {vi,vé,...,v;ﬂ,y’}.

We prove that W = V(G ® K;) \ (V(G) UU) is a resolving set for G ® K. It is
clear that for each v € V(G)\ V, v' € W and v is the unique vertex of G ® K; with
d(v,v") = 1. Hence for each v € V(G) \ V, r(v|W) is unique. That means, W is a
resolving set for G if W resolves U U V. Note that, y is the unique vertex of U UV
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with distance 2 to a’. Since 2’ € W, r(y|W) is unique. On the other hand, for each
i1<i<D-1,

’I”(’U”{’Ué,’u;)} = (Z+ 17D —i+ 1)5 T(’U“{’Uévv;} = (Z+2,D—Z+2)

Hence for each 4, j, 1 <i# j < D — 1, r(v;|W) # r(v;|W) and r(vi|[W) # r(v;|W).
Also, if r(v;|W) = r(v;|W) for some i,j, 1 < i,5 < D — 1, then r(v;[{vy,v),} =
r(vil{vy, v}, }. Thus, i+1 = j+2and D—i+1= D—j+1 these imply i = j+1 and
j =1+ 1, which is impossible. Therefore to complete the prove, we need to prove
that (y'|W) is different from the metric representations of vertices in UUV \{y, y'}.
Since z,y are adjacent, d(y’,z’) = 3. If there exists a vertex t € U UV \ {y,y'}
with 7(y'|W) = r(¢|W) then d(¢,2’) = 3. This means ¢ is adjacent to y. Otherwise,
d(t,z") > 4, because = has no neighbour in V(P). Thus ¢t € V, say t = v;, for some
1,1 <1< D —1. Hence,

r(y'[{vh, v} = r(vil{vg, v} = (i +1,D —i+1).

That yields, d(y,vy) = d(y',v5) —1 = i and d(y,v))) = d(y',v),) =1 = D —i.
Therefore,
D +2 = d(vy,v.) < d(vg,y) +d(y,v.) = D.

Therefore W is a resolving set for G © K;. That is, dim(G © K1) < |W|=n — D.
Which is a contradiction, therefore = has a neighbour in V(P). ad

The next lemma characterizes all graphs that attain the bound in Theorem 1.2 for
the case k = 1.

Lemma 2.5. Let G be a graph of order n > 2. Then dim(G ® K1) =n —1 if and
only if G =K,, or G =Ky 1.

Proof. Assume that for each v € V(G), v’ is the leaf is adjacent to v in G ® K.
First let dim(G ® K1) = n — 1. If the diameter of G is D, then by Theorem 2.3,
n—1<n-—D+41,thatis D < 2. D =1 implies G = K,,. Now consider D = 2
we claim that G = Kj ,,—1. Let P = (vg,v1,v2) be a shortest path of length D in
G. It is enough to consider the case P # G, otherwise G = Kj 2. Assume that
x ¢ V(P), by Lemma 2.4, x has some neighbours in P. If z is adjacent to a leaf
of P, say vg, then let W = V(G ® K1) \ V(G) U {v],v5}. It is easy to see that the
metric representation of every vertex in V(G ® K1) \ {v1, v2, v}, vy} with respect to
W is unique. Also, we have {v(,z'} C W and

rvil{vg,2'}) = (2,7),  r(Wil{ve,2'}) = (3,7 +1),

T(UQHU(/)?*CC/}) = (3,2), T‘(U/2|{’U6, xl}) = (4,3),
where r € {2,3}. Therefore W is a resolving set for G of cardinality n — 2, this
contradiction implies that no leaf of P is adjacent to any vertex of V(G) \ V(P)
and by Lemma 2.4, v, is adjacent to all vertices in V(G) \ V(P). To prove our

claim, we need to prove that V(G) \ V(P) is an independent set of vertices. If
a,b € V(G)\ V(P) are adjacent, then let W = V(G © K1)\ V(G) U {v},V'}. Tt is
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easy to see that the metric representation of every vertex in V(GO K1)\ {v1, b, v1,b'}
with respect to W is unique. Also, we have {v{,a’} C W and

T(Ul |{U67 a/}) = (27 2)7 T(’UllHUév al}) = (37 3)7 T(bHU(/)v al}) = (37 2)7 T‘(bl|{’l)6, a/}) = (47 3)'

Therefore W is a resolving set for G of cardinality n — 2. This contradiction yields
V(G)\ V(P) is an independent set and G = K1 ,—1.

Conversely, if G = K,,, then by Inequality 1.1, n — 1 < dim(G ® K1) and by
Theorem 1.2 dim(G ® K1) < n — 1. Therefore dim(G © K1) = n — 1. In the case
G = Kj -1, Gisatree with 0(G) = n—1 and by Theorem 1.3, dim(GOK;) = n—1.
O
By Theorem 1.1, if G = K (s,t > 1),G = K,V Ky(s > 1,t > 2), or G =
KsV (K UKq)(s,t > 1), then dim(G) = n(G) — 2. Inequality 1.1 and Theorem 1.2
imply that for all these graphs n(G) — 2 < dim(G © K1) < n(G) — 1. On the other
hand by Theorem 1.3 the star graph K ,—1 is the only graph among these with
dim(K7,,—1 @ K1) = n — 1. Therefore we have the following corollary.

Corollary 2.6. If G = Ksi(s,t > 1),G = K,V Ki(s > 1,t > 2), or G =
K,V (K:UKq)(s,t > 1), then dim(G © K1) = n(G) — 2.

The following theorem completes the characterization of all graphs that attain the
bound in Theorem 1.2.

Theorem 2.7. Let G be a graph of order n > 2. Then dim(Gy) = 28~'n—1 if and
onlyifk=1and G=K,, or G = Kj 1.

Proof. By Lemma 2.5, it is sufficient to prove that the equality is not hold for the
case k > 2. Suppose on the contrary that equality is hold for some integer k£ > 2.
Let H =G e 1 K;. Then G ©F K1 = H® K7 and the order of H is 25~n. Since
equality is hold for GO* K, we have dim(H®K) = n(H)—1. Hence, by Lemma 2.5,
H is a complete graph or a star graph. Since H has some vertices of degree 1, H is
not a complete graph. Therefore H must be a star graph with n(H) — 1 leaves. On
the other hand, H has 2¥=2n leaves. It implies that 28" 1n—1 = n(H) -1 = 2 2n,
which is a contradiction. Therefore dim(G ©* K1) = 2¥~!n — 1 if and only if k = 1
and G =K, or G =Ky 1. O
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