KYUNGPOOK Math. J. 63(2023), 123-129 https://doi.org/10.5666/KMJ.2022.63.1.123 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On the Metric Dimension of Corona Product of a Graph with K_1

Mohsen Jannesari

Department of Science, Shahreza Campus, University of Isfahan, Iran e-mail: m.jannesari@shr.ui.ac.ir

ABSTRACT. For an ordered set $W = \{w_1, w_2, \ldots, w_k\}$ of vertices and a vertex v in a connected graph G, the k-vector

$$r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$$

is called the metric representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension $\dim(G)$, and a resolving set of minimum cardinality is a basis of G. The corona product, $G \odot H$ of graphs G and H is obtained by taking one copy of G and n(G) copies of H, and by joining each vertex of the *i*th copy of H to the *i*th vertex of G. In this paper, we obtain bounds for $\dim(G \odot K_1)$, characterize all graphs G with $\dim(G \odot K_1) = \dim(G)$, and prove that $\dim(G \odot K_1) = n - 1$ if and only if G is the complete graph K_n or the star graph $K_{1,n-1}$.

1. Introduction

Throughout this paper G is a connected finite simple graph of order n(G). The vertex and edge sets of G are V(G) and E(G), respectively. For vertices u and v in a graph G, the distance of two vertices u and v, denoted by $d_G(u, v)$, is the length of a shortest path between u and v in G. We write it simply d(u, v) when no confusion can arise. The diameter of G, D(G), is $\max_{u,v \in V(G)} d(u, v)$. The symbol (v_1, v_2, \ldots, v_n) represents a path of order n, P_n .

For an ordered set $W = \{w_1, w_2, \ldots, w_k\} \subseteq V(G)$ and a vertex v of G, the k-vector $r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k))$ is called the *metric representation* of v with respect to W. The set W is called a *resolving set* for G if distinct vertices of G have different metric representations. A resolving set W for G with minimum cardinality is called a *metric basis* of G, and its cardinality is the *metric*

Received November 17, 2021; revised June 24, 2022; accepted June 24, 2022. 2020 Mathematics Subject Classification: 05C12.

Key words and phrases: Resolving set, Metric dimension, Metric basis, Corona product.

dimension, dim(G), of G. It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider the vertices in $V(G)\backslash W$, because $w \in W$ is the unique vertex of G for which d(w, w) = 0.

In [12], Slater introduced the idea of a resolving set and used a *locating set* and the *location number* for a resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and Melter [8] discovered the concept of the location number as well and called it the metric dimension. The concept of a resolving set has various applications in diverse areas including coin weighing problems [11], network discovery and verification [1], robot navigation [9], mastermind game [3], problems of pattern recognition and image processing [10], and combinatorial search and optimization [11]. For more results related to these concepts see [2, 3, 4, 6, 9].

The join of two graphs G and $H, G \vee H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$ and joining each vertex of G to all vertices of H. Also, the disjoint union of two graphs G and $H, V(G) \cap V(H) = \emptyset$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Chartrand et al. [5] determined the metric dimension of some families of graphs such as paths, trees, and complete graphs. The following theorem gives the metric dimension of some well-known classes of graphs.

Theorem 1.1. ([5, 13]) Let G be a graph of order $n \ge 2$.

(a) $\dim(G) = 1$ if and only if $G = P_n$.

(b) $\dim(G) = n - 1$ if and only if $G = K_n$.

(c) For $n \ge 3$, dim $(C_n) = 2$.

(d) For $n \ge 4$, dim(G) = n-2 if and only if $G = K_{s,t}(s,t \ge 1)$, $G = K_s \vee \overline{K}_t(s \ge 1, t \ge 2)$, or $G = K_s \vee (K_t \cup K_1)(s,t \ge 1)$.

The corona product, $G \odot H$ of graphs G and H is obtained by taking one copy of G and n(G) copy of H, and by joining each vertex of the *i*th copy of H to the *i*th vertex of G, $1 \le i \le n(G)$. When $n(H) \ge 2$, Fernau et al. [7], showed that $\dim(G \odot H)$ is equal to n(G) times of adjacency dimension of H. When n(H) = 1 the problem of finding $\dim(G \odot H)$ is more difficult and there is a few results about it.

For each integer $k \geq 2$, Yero et al. [14], defined the graph $G \odot^k H$ recursively from $G \odot H$ as $G \odot^k H = (G \odot^{k-1} H) \odot H$. They proved the following theorem for the case n(H) = 1.

Theorem 1.2. ([14]) For every connected graph G of order $n \ge 2$, dim $(G \odot^k K_1) \le 2^{k-1}n - 1$.

Buczkowski et al. [2] proved that if G' is a graph by adding a leaf to a nontrivial graph G, then

(1.1)
$$\dim(G) \le \dim(G') \le \dim(G) + 1$$

This implies $\dim(G) \leq \dim(G \odot K_1)$. Yero et al. [14] compute $\dim(G \odot K_1)$, when G is a tree.

Theorem 1.3. ([14]) If T is a tree, then the metric dimension of $T \odot K_1$ is equal to the number of leaves of T.

In this paper, we focus on the metric dimension of $G \odot K_1$. Clearly, $G \odot K_1$ is a path if and only $G \in \{K_1, K_2\}$. Hence, for graphs G of order greater than 2 we have $2 \leq \dim(G \odot K_1) \leq n(G) - 1$. We obtain an upper bound for $\dim(G \odot K_1)$, in terms of order and diameter of G. Using this bound we characterize all graphs G with $\dim(G \odot K_1) = n(G) - 1$. Then we characterize all graphs that attain the bound in Theorem 1.2. In fact we prove $\dim(G \odot^k K_1) = 2^{k-1}n - 1$ if and only if k = 1 and G is complete graph K_n or G is star graph $K_{1,n-1}$. Also, we give a necessary and sufficient condition to $\dim(G) = \dim(G \odot K_1)$.

2. Main Results

In this section we consider the metric dimension of the graph $G \odot K_1$ and characterize all graphs that attain the bound in Theorem 1.2 for the case k = 1. Using this result, we complete the characterization for all integer numbers $k \ge 1$. By the following lemma, $G \odot K_1$ has a basis consists of leaves.

Lemma 2.1. For each graph G, the graph $G \odot K_1$ has a basis B such that all members of B are of degree one.

Proof. For each vertex $v \in V(G)$ let v' be the leaf is adjacent to v in $G \odot K_1$. It is clear that for every $x, y \in V(G \odot K_1)$, d(x, y') = d(x, y) + 1. Hence, if y resolves a pair a, b of vertices of $G \odot K_1$, then y' resolves this pair, as well. Moreover, y does not resolve y' from any vertex of $N(y) \setminus \{y'\}$, but y' resolves y from all other vertices of $G \odot K_1$. Thus, if R is a resolving set for $G \odot K_1$ such that $\{y, y'\} \subseteq R$, then $R \setminus \{y\}$ is a resolving set for $G \odot K_1$, too. Now let B be a basis for $G \odot K_1$ and v_1, v_2, \ldots, v_t be all none-leaf vertices of B. Therefore $B' = (B \cup \{v'_1, v'_2, \ldots, v'_t\}) \setminus \{v_1, v_2, \ldots, v_t\}$ is a basis for $G \odot K_1$, and all vertices of B' are leaves.

By Inequality 1.1, for each graph G we have $\dim(G) \leq \dim(G \odot K_1)$. The following theorem explain a necessary and sufficient condition to $\dim(G) = \dim(G \odot K_1)$.

Theorem 2.2. Let G be a graph. Then $\dim(G) = \dim(G \odot K_1)$ if and only if there exists a metric basis B of G such that for each $u, v \in V(G) \setminus B$, $r(u|B) - r(v|B) \neq (1, 1, ..., 1)$.

Proof. For each vertex $v \in V(G)$ let v' be the leaf is adjacent to v in $G \odot K_1$. Let dim(G) = dim $(G \odot K_1)$ and B' is a basis of $G \odot K_1$. Consider $B = \{v \in V(G) | v \in B' \lor v' \in B'\}$. If r(u|B) = r(v|B) for some $u, v \in V(G)$, then there exists a vertex $b' \in B'$ such that $d_{G \odot K_1}(u, b') \neq d_{G \odot K_1}(v, b')$ and $d_G(u, b) = d_G(v, b)$. This is impossible, because $d_{G \odot K_1}(u, b') = d_G(u, b) + 1$ and $d_{G \odot K_1}(v, b') = d_G(v, b) + 1$. Therefore B is a basis for G. If there exist vertices $u, v \in V(G) \setminus B$ with r(u|B) - r(v|B) = (1, 1, ..., 1), then r(u|B') - r(v|B') = (1, 1, ..., 1). Since $v \notin B$, we have $v' \notin B'$ and r(v'|B') - r(v|B') = (1, 1, ..., 1). That means r(v'|B') = r(u|B'), which is a contradiction. Therefore $r(u|B) - r(v|B) \neq (1, 1, ..., 1)$, for every $u, v \in V(G) \setminus B$.

For the converse, let B be a basis of G such that $r(u|B) - r(v|B) \neq (1, 1, ..., 1)$ for each $u, v \in V(G) \setminus B$. Set $B' = \{v' \in V(G \odot K_1) | v \in B\}$. We prove that B' is a resolving set for $G \odot K_1$. Let $x, y \in V(G \odot K_1) \setminus B'$. If both of x, y are in V(G) or both of them are not in V(G), then $r(x|B') \neq r(y|B')$, because B is a basis of G. Now let $x \in V(G)$ and $y \in V(G \odot K_1) \setminus V(G)$ and r(x|B') = r(y|B'). Hence y is the only leaf of a vertex $z \in V(G)$ and r(y|B') - r(z|B') = (1, 1, ..., 1). Therefore r(x|B') - r(z|B') = (1, 1, ..., 1). By definition of B', we have r(x|B) - r(z|B) =(1, 1, ..., 1). Note that $x, y \notin B'$ yields $x, z \notin B$, a contradiction. Therefore B' is a resolving set for $G \odot K_1$ of size dim(G). This means dim $(G \odot K_1) \leq \dim(G)$ and Inequality 1.1 implies dim $(G \odot K_1) = \dim(G)$.

The following upper bound is useful to study of metric dimension of $G \odot K_1$.

Theorem 2.3. Let G be a graph of order n and diameter D. Then $\dim(G \odot K_1) \leq n - D + 1$.

Proof. Assume that for each $v \in V(G)$, v' is the leaf is adjacent to v in $G \odot K_1$. Let (v_0, v_1, \ldots, v_D) be a shortest path of length D in G. If $W = \{v'_0, v'_D\}$, then $r(v_i|W) = (i+1, D-i+1), 0 \le i \le D$ and $r(v'_i|W) = (i+2, D-i+2), 1 \le i \le D-1$. We prove that W resolves the set $\{v_0, v_1, \ldots, v_D, v'_0, v'_1, \ldots, v'_D\}$. It is easy to see that for $i \ne j, r(v_i|W) \ne r(v_j|W)$ and $r(v'_i|W) \ne r(v'_j|W)$. On the hand, if $r(v_i|W) =$ $r(v'_j|W)$ for some i, j, then (i+1, D-i+1) = (j+2, D-j+2). The equality of the first entry implies that j = i - 1 and the equality of the second entry implies that i = j - 1, which is impossible. Now let $W_1 = V(G \odot K_1) \setminus (V(G) \cup \{v'_1, v'_2, \ldots, v'_{D-1}\})$. It is clear that $|W_1| = n - D + 1$. To complete the proof, it is sufficient to prove that W_1 is a resolving set for $G \odot K_1$. Note that $v_i, D + 1 \le i \le n - 1$, is the unique vertex in $G \odot K_1$ with distance 1 to v'_i . That means W_1 is a resolving set for $G \odot K_1$, since $W \subseteq W_1$ resolves $\{v_0, v_1, \ldots, v_D, v'_0, v'_1, \ldots, v'_D\}$. □ It is easy to see that upper bound in Theorem 2.3 is tight for $G = P_n$. The following lemma gives a property of graphs that attain the bound in Theorem 2.3.

Lemma 2.4. Let G be a graph of order n, diameter D and $\dim(G \odot K_1) = n - D + 1$. If P is a shortest path of length D in G, then each vertex of $G \setminus P$ is adjacent to a vertex of P.

Proof. Assume that for each $v \in V(G)$, v' is the leaf is adjacent to v in $G \odot K_1$. Let $P = (v_0, v_1, \ldots, v_D)$ be a shortest path of length D in G. Suppose, on the contrary, there exists a vertex $x \in V(G \setminus P)$ with no adjacent in P. Since G is connected, x has a neighbour $y \notin V(P)$. Let

$$V = \{v_1, v_2, \dots, v_{D-1}, y\}, \qquad U = \{v'_1, v'_2, \dots, v'_{D-1}, y'\}.$$

We prove that $W = V(G \odot K_1) \setminus (V(G) \cup U)$ is a resolving set for $G \odot K_1$. It is clear that for each $v \in V(G) \setminus V$, $v' \in W$ and v is the unique vertex of $G \odot K_1$ with d(v, v') = 1. Hence for each $v \in V(G) \setminus V$, r(v|W) is unique. That means, W is a resolving set for G if W resolves $U \cup V$. Note that, y is the unique vertex of $U \cup V$ with distance 2 to x'. Since $x' \in W$, r(y|W) is unique. On the other hand, for each $i, 1 \leq i \leq D - 1$,

$$r(v_i|\{v_0', v_D'\} = (i+1, D-i+1), \qquad r(v_i'|\{v_0', v_D'\} = (i+2, D-i+2).$$

Hence for each $i, j, 1 \leq i \neq j \leq D-1$, $r(v_i|W) \neq r(v_j|W)$ and $r(v'_i|W) \neq r(v'_j|W)$. Also, if $r(v_i|W) = r(v'_j|W)$ for some $i, j, 1 \leq i, j \leq D-1$, then $r(v_i|\{v'_0, v'_D\} = r(v'_j|\{v'_0, v'_D\}$. Thus, i+1 = j+2 and D-i+1 = D-j+1 these imply i = j+1 and j = i+1, which is impossible. Therefore to complete the prove, we need to prove that r(y'|W) is different from the metric representations of vertices in $U \cup V \setminus \{y, y'\}$. Since x, y are adjacent, d(y', x') = 3. If there exists a vertex $t \in U \cup V \setminus \{y, y'\}$ with r(y'|W) = r(t|W) then d(t, x') = 3. This means t is adjacent to y. Otherwise, $d(t, x') \geq 4$, because x has no neighbour in V(P). Thus $t \in V$, say $t = v_i$, for some $i, 1 \leq i \leq D-1$. Hence,

$$r(y'|\{v'_0, v'_D\} = r(v_i|\{v'_0, v'_D\} = (i+1, D-i+1).$$

That yields, $d(y, v'_0) = d(y', v'_0) - 1 = i$ and $d(y, v'_D) = d(y', v'_D) - 1 = D - i$. Therefore,

$$D + 2 = d(v'_0, v'_D) \le d(v'_0, y) + d(y, v'_D) = D.$$

Therefore W is a resolving set for $G \odot K_1$. That is, $\dim(G \odot K_1) \leq |W| = n - D$. Which is a contradiction, therefore x has a neighbour in V(P).

The next lemma characterizes all graphs that attain the bound in Theorem 1.2 for the case k = 1.

Lemma 2.5. Let G be a graph of order $n \ge 2$. Then $\dim(G \odot K_1) = n - 1$ if and only if $G = K_n$ or $G = K_{1,n-1}$.

Proof. Assume that for each $v \in V(G)$, v' is the leaf is adjacent to v in $G \odot K_1$. First let dim $(G \odot K_1) = n - 1$. If the diameter of G is D, then by Theorem 2.3, $n - 1 \leq n - D + 1$, that is $D \leq 2$. D = 1 implies $G = K_n$. Now consider D = 2 we claim that $G = K_{1,n-1}$. Let $P = (v_0, v_1, v_2)$ be a shortest path of length D in G. It is enough to consider the case $P \neq G$, otherwise $G = K_{1,2}$. Assume that $x \notin V(P)$, by Lemma 2.4, x has some neighbours in P. If x is adjacent to a leaf of P, say v_2 , then let $W = V(G \odot K_1) \setminus V(G) \cup \{v'_1, v'_2\}$. It is easy to see that the metric representation of every vertex in $V(G \odot K_1) \setminus \{v_1, v_2, v'_1, v'_2\}$ with respect to W is unique. Also, we have $\{v'_0, x'\} \subseteq W$ and

$$r(v_1|\{v'_0, x'\}) = (2, r), \quad r(v'_1|\{v'_0, x'\}) = (3, r+1),$$

$$r(v_2|\{v'_0, x'\}) = (3, 2), \quad r(v'_2|\{v'_0, x'\}) = (4, 3),$$

where $r \in \{2,3\}$. Therefore W is a resolving set for G of cardinality n-2, this contradiction implies that no leaf of P is adjacent to any vertex of $V(G) \setminus V(P)$ and by Lemma 2.4, v_1 is adjacent to all vertices in $V(G) \setminus V(P)$. To prove our claim, we need to prove that $V(G) \setminus V(P)$ is an independent set of vertices. If $a, b \in V(G) \setminus V(P)$ are adjacent, then let $W = V(G \odot K_1) \setminus V(G) \cup \{v'_1, b'\}$. It is

easy to see that the metric representation of every vertex in $V(G \odot K_1) \setminus \{v_1, b, v'_1, b'\}$ with respect to W is unique. Also, we have $\{v'_0, a'\} \subseteq W$ and

$$r(v_1|\{v'_0, a'\}) = (2, 2), r(v'_1|\{v'_0, a'\}) = (3, 3), r(b|\{v'_0, a'\}) = (3, 2), r(b'|\{v'_0, a'\}) = (4, 3), r(b'|\{v'_0, a'\})$$

Therefore W is a resolving set for G of cardinality n-2. This contradiction yields $V(G) \setminus V(P)$ is an independent set and $G = K_{1,n-1}$.

Conversely, if $G = K_n$, then by Inequality 1.1, $n - 1 \leq \dim(G \odot K_1)$ and by Theorem 1.2 $\dim(G \odot K_1) \leq n - 1$. Therefore $\dim(G \odot K_1) = n - 1$. In the case $G = K_{1,n-1}, G$ is a tree with $\sigma(G) = n - 1$ and by Theorem 1.3, $\dim(G \odot K_1) = n - 1$. \Box

By Theorem 1.1, if $G = K_{s,t}(s,t \ge 1), G = K_s \lor \overline{K}_t(s \ge 1,t \ge 2)$, or $G = K_s \lor (K_t \cup K_1)(s,t \ge 1)$, then $\dim(G) = n(G) - 2$. Inequality 1.1 and Theorem 1.2 imply that for all these graphs $n(G) - 2 \le \dim(G \odot K_1) \le n(G) - 1$. On the other hand by Theorem 1.3 the star graph $K_{1,n-1}$ is the only graph among these with $\dim(K_{1,n-1} \odot K_1) = n - 1$. Therefore we have the following corollary.

Corollary 2.6. If $G = K_{s,t}(s,t > 1), G = K_s \vee \overline{K}_t(s \ge 1,t \ge 2)$, or $G = K_s \vee (K_t \cup K_1)(s,t \ge 1)$, then dim $(G \odot K_1) = n(G) - 2$.

The following theorem completes the characterization of all graphs that attain the bound in Theorem 1.2.

Theorem 2.7. Let G be a graph of order $n \ge 2$. Then $\dim(G_k) = 2^{k-1}n - 1$ if and only if k = 1 and $G = K_n$ or $G = K_{1,n-1}$.

Proof. By Lemma 2.5, it is sufficient to prove that the equality is not hold for the case $k \ge 2$. Suppose on the contrary that equality is hold for some integer $k \ge 2$. Let $H = G \odot^{k-1} K_1$. Then $G \odot^k K_1 = H \odot K_1$ and the order of H is $2^{k-1}n$. Since equality is hold for $G \odot^k K_1$, we have $\dim(H \odot K_1) = n(H) - 1$. Hence, by Lemma 2.5, H is a complete graph or a star graph. Since H has some vertices of degree 1, H is not a complete graph. Therefore H must be a star graph with n(H) - 1 leaves. On the other hand, H has $2^{k-2}n$ leaves. It implies that $2^{k-1}n - 1 = n(H) - 1 = 2^{k-2}n$, which is a contradiction. Therefore $\dim(G \odot^k K_1) = 2^{k-1}n - 1$ if and only if k = 1 and $G = K_n$ or $G = K_{1,n-1}$. □

References

- Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak and L. S. Ram, *Network dicovery and verification*, IEEE J. Sel. Areas Commun., 24(12)(2006) 2168–2181.
- [2] P. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hungar. 46(1)(2003), 9–15.
- [3] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21(2)(2007) 423–441.

- [4] G. G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin., 88(2008) 349–366.
- [5] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105(2000) 99–113.
- [6] G. Chartrand and P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160(2003), 47–68.
- [7] H. Fernau and J. A. Rodriguez-Velazquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: Combinatorial and computational results, Discrete Appl. Math., 236(2018) 183–202.
- [8] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2(1976) 191–195.
- S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70(3)(1996) 217–229.
- [10] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Graph. Image Process., 25(1984) 113–121.
- [11] A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2)(2004) 383–393.
- [12] P. J. Slater, Leaves of trees, Congr. Numer., 14(1975) 549–559.
- [13] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22(1988) 445–455.
- [14] I. G. Yero, D. Kuziak and J. A. Rodriguez-velaquez, On the metric dimension of corona product graphs, Comput. Math. Appl., 61(2011) 2793–2798.