• Title/Summary/Keyword: Fuzzy-Neural network

Search Result 1,208, Processing Time 0.024 seconds

Design of Optimized Type-2 Fuzzy RBFNN Echo Pattern Classifier Using Meterological Radar Data (기상레이더를 이용한 최적화된 Type-2 퍼지 RBFNN 에코 패턴분류기 설계)

  • Song, Chan-Seok;Lee, Seung-Chul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.922-934
    • /
    • 2015
  • In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.

Virtual Environment Interfacing based on State Automata and Elementary Classifiers (상태 오토마타와 기본 요소분류기를 이용한 가상현실용 실시간 인터페이싱)

  • Kim, Jong-Sung;Lee, Chan-Su;Song, Kyung-Joon;Min, Byung-Eui;Park, Chee-Hang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3033-3044
    • /
    • 1997
  • This paper presents a system which recognizes dynamic hand gesture for virtual reality (VR). A dynamic hand gesture is a method of communication for human and computer who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the produced by two persons with their hands may not have the same numerical values where obtained through electronic sensors. To recognize meaningful gesture from continuous gestures which have no token of beginning and end, this system segments current motion states using the state automata. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.

  • PDF

On-line Motion Control of Avatar Using Hand Gesture Recognition (손 제스터 인식을 이용한 실시간 아바타 자세 제어)

  • Kim, Jong-Sung;Kim, Jung-Bae;Song, Kyung-Joon;Min, Byung-Eui;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.52-62
    • /
    • 1999
  • This paper presents a system which recognizes dynamic hand gestures on-line for controlling motion of numan avatar in virtual environment(VF). A dynamic hand gesture is a method of communication between a computer and a human being who uses gestures, especially both hands and fingers. A human avatar consists of 32 degree of freedom(DOF) for natural motion in VE and navigates by 8 pre-defined dynamic hand gestures. Inverse kinematics and dynamic kinematics are applied for real-time motion control of human avatar. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line dynamic hand gesture recognition.

  • PDF

ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘)

  • 문정욱;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1318-1324
    • /
    • 2003
  • There are two problems in the conventional ART1 algorithm. One is in similarity testing method of the conventional ART1 between input patterns and stored patterns. The other is that vigilance threshold of conventional ART1 influences the number of clusters and the rate of recognition. In this paper, new similarity testing method and dynamical vigilance threshold method are proposed to solve these problems. The former is similarity test method using the rate of norm of exclusive-NOR between input patterns and stored patterns and the rate of nodes have equivalence value, and the latter method dynamically controls vigilance threshold to similarity using fuzzy operations and the sum operation of Yager. To check the performance of new methods, we used 26 alphabet characters and nosed characters. In experiment results, the proposed methods are better than the conventional methods in ART1, because the proposed methods are less sensitive than the conventional methods for initial vigilance and the recognition rate of the proposed methods is higher than that of the conventional methods.

Forecasting of Real Time Traffic Situation by Fuzzy and Intelligent Software Programmable Logic Controller (퍼지 및 지능적 PLC에 의한 실시간 교통상황 예보 시스템)

  • 홍유식;조영임
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.73-83
    • /
    • 2004
  • With increasing numbers of vehicles on restricted roads, It happens that we have much wasted time and decreased average car speed. This paper proposes a new concept of coordinating green time which controls 10 traffic intersection systems. For instance, if we have a baseball game at 8 pm today, traffic volume toward the baseball game at 8 pm today, franc volume toward the baseball game will be increased 1 hour or 1 hour and 30 minutes before the baseball game. At that time we can not predict optimal green time Even though there have smart electro-sensitive traffic light system. Therefore, in this paper to improve average vehicle speed and reduce average vehicle waiting time, we created optimal green time using fuzzy rules md neural network as a preprocessing. Also, we developed an Intelligent PLC(Programmable Logic Controller) for real time traffic forecasting as a postprocesing about unexpectable conditions. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive franc light system does not consider coordinating green time.

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks (Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구)

  • Ryu Kyung-Han;Lee Song-Jae;Soh Dea-Wha;Hong Sang-Jeen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1588-1593
    • /
    • 2005
  • In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.

Monitoring method of Unlawful Parking Vehicle using RFID technology and Neural Networks (RFID 기술과 신경망 알고리즘을 이용한 불법 주차 차량 감시 방법)

  • Hong, You-Sik;Kim, Cheon-Shik;Han, Chang-Pyoung;Oh, Seon;Yoon, Eun-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.13-20
    • /
    • 2009
  • RFIDs have been used a lot of control systems such as library and security efficiently. Unlawful parking control is one of them and it will bring a lot of merit. Especially, it can be used vehicles. If a vehicle comes to unlawful parking place, reader system read the tag of a vehicle. RFID reader confirm the vehicle and record current time at the same time send information related the vehicle to the server system. After, it can be activated. If the vehicle move from unlawful parking place, RFID reader record departed time. In this paper, we proposed a monitoring system for unlawful parking cars. Especially, it is certain that this proposed modelling is very efficient and correct.