• Title/Summary/Keyword: Fuzzy valued function

Search Result 31, Processing Time 0.026 seconds

New Similarity Measures of Simplified Neutrosophic Sets and Their Applications

  • Liu, Chunfang
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.790-800
    • /
    • 2018
  • The simplified neutrosophic set (SNS) is a generalization of fuzzy set that is designed for some practical situations in which each element has truth membership function, indeterminacy membership function and falsity membership function. In this paper, we propose a new method to construct similarity measures of single valued neutrosophic sets (SVNSs) and interval valued neutrosophic sets (IVNSs), respectively. Then we prove that the proposed formulas satisfy the axiomatic definition of the similarity measure. At last, we apply them to pattern recognition under the single valued neutrosophic environment and multi-criteria decision-making problems under the interval valued neutrosophic environment. The results show that our methods are effective and reasonable.

Multi-variate Fuzzy Polynomial Regression using Shape Preserving Operations

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.131-141
    • /
    • 2003
  • In this paper, we prove that multi-variate fuzzy polynomials are universal approximators for multi-variate fuzzy functions which are the extension principle of continuous real-valued function under $T_W-based$ fuzzy arithmetic operations for a distance measure that Buckley et al.(1999) used. We also consider a class of fuzzy polynomial regression model. A mixed non-linear programming approach is used to derive the satisfying solution.

  • PDF

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

On comonotonically additive interval-valued functionals and interval-valued Choquet integrals(II) (보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(II))

  • Jang, Lee-Chae;Kim, Tae-Kyun;Jeon, Jong-Duek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Schmeidler[14] and Narukawa[12], and prove some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space, cf.[9,10,11,13].

Fuzzy Hypotheses Testing of Likert Fuzzy Scale (리커트 퍼지 척도에 대한 퍼지 가설검정)

  • Kang Man-Ki;Lee Chang-Eun;Chio Gue-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.533-537
    • /
    • 2005
  • A Likert scale is an often used questionnaire format. It requests respondents to specify their level of agreement to each of a list of statements. A typical question using a five-point Likert scale might make a statement. The results shows vague values. We have five-point fuzzy membership function by fuzzy valued three-point for the question and fuzzy hypothesis test the membership function by 95% confidence interval.

New Canonical Forms for Enumerating Fuzzy/C Switching Functions

  • Araki, Tomoyuki;Tatsumi, Hisayuki;Mukaidono, Masao;Yamamoto, Fujio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.537-542
    • /
    • 1998
  • Logic functions such as fuzzy switching functions and multiple-valued Kleenean functions, that are models of Kleene algebra have been studied as foundation of fuzzy logic. This paper deals with a new kinds of functions-fuzzy switching functions with constants-which have features of both the above two kinds of functions . In this paper, we propose new canonical forms for enumerating them. They are much useful to estimate simply the number of fuzzy switching functions with constants.

  • PDF

Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function) (러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • In this paper we propose a hierarchical classification algorithm based on rough membership function which can reason a new object approximately. We use the fuzzy reasoning method that substitutes fuzzy membership value for linguistic uncertainty and reason approximately based on the composition of membership values of conditional sttributes Here we use the rough membership function instead of the fuzzy membership function It can reduce the process that the fuzzy algorithm using fuzzy membership function produces fuzzy rules In addition, we transform the information system to the understandable minimal decision information system In order to do we, study the discretization of continuous valued attributes and propose the discretization algorithm based on the rough membership function and the entropy of the information theory The test shows a good partition that produce the smaller decision system We experimented the IRIS data etc. using our proposed algorithm The experimental results with IRIS data shows 96%~98% rate of classification.

  • PDF

Design of Optimal Digital IIR Filters using the Genetic Algorithm

  • Jang, Jung-Doo;Kang, Seong G.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This paper presents an evolutionary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital fillers as high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of the desired filter transfer function through genetic search fur given filter specifications of minimum filter order. Crossover and mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently from the filter specifications, not from algebraic transformations.

A Fuzzy Impulse Noise Filter Based on Boundary Discriminative Noise Detection

  • Verma, Om Prakash;Singh, Shweta
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2013
  • The paper presents a fuzzy based impulse noise filter for both gray scale and color images. The proposed approach is based on the technique of boundary discriminative noise detection. The algorithm is a multi-step process comprising detection, filtering and color correction stages. The detection procedure classifies the pixels as corrupted and uncorrupted by computing decision boundaries, which are fuzzified to improve the outputs obtained. In the case of color images, a correction term is added by examining the interactions between the color components for further improvement. Quantitative and qualitative analysis, performed on standard gray scale and color image, shows improved performance of the proposed technique over existing state-of-the-art algorithms in terms of Peak Signal to Noise Ratio (PSNR) and color difference metrics. The analysis proves the applicability of the proposed algorithm to random valued impulse noise.

Function Optimization and Event Clustering by Adaptive Differential Evolution (적응성 있는 차분 진화에 의한 함수최적화와 이벤트 클러스터링)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.451-461
    • /
    • 2002
  • Differential evolution(DE) has been preyed to be an efficient method for optimizing real-valued multi-modal objective functions. DE's main assets are its conceptual simplicity and ease of use. However, the convergence properties are deeply dependent on the control parameters of DE. This paper proposes an adaptive differential evolution(ADE) method which combines with a variant of DE and an adaptive mechanism of the control parameters. ADE contributes to the robustness and the easy use of the DE without deteriorating the convergence. 12 optimization problems is considered to test ADE. As an application of ADE the paper presents a supervised clustering method for predicting events, what is called, an evolutionary event clustering(EEC). EEC is tested for 4 cases used widely for the validation of data modeling.