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Multi-variate Fuzzy Polynomial Regression

using Shape Preserving Operations1)

Dug Hun Hong2),  Hae Young Do3)

Abstract

In this paper, we prove that multi-variate fuzzy polynomials are universal 
approximators for multi-variate fuzzy functions which are the extension 

principle of continuous real-valued function under TW-based fuzzy 

arithmetic operations for a distance measure that Buckley et al.(1999) 
used. We also consider a class of fuzzy polynomial regression model. A 
mixed non-linear programming approach is used to derive the satisfying 
solution.

1. Introduction

For many years statistical linear regression has been used in almost every field 

of science. The purpose of regression analysis is to explain the variation of a 

dependent variable Y  in terms of the variation of explanatory variables X  as 

Y= f(X)  where f(X)  is a linear function. The use of statistical linear regression is bounded  by some strict assumptions  about the given data, that is, the 

unobserved error term are mutually independent and identically distributed. As a 

result, the statistical regression model can be applied only if the given data are 

distributed according to a statistical model, and the relation between x  and y  is 

crisp.

Since Tanaka et al. (1982) proposed a study in linear regression analysis with 

fuzzy model, the fuzzy regression analysis has been  widely studied and applied in 

a variety of substantive areas. A collection of recent papers dealing with several 
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approaches to fuzzy regression analysis can be found in Kacprzk and Fedrizzi 

(1992).

Recently, Buckley, Feuring and Hayashi (1999) argued that a very impact class 

of fuzzy functions in multi-variate non-linear fuzzy regression is the multi-variate 

fuzzy polynomials using a distance measure on the collection of fuzzy numbers 

under "min"-norm based fuzzy arithmatic operations. And they introduced an 

evolution algorithm which search library of multi-variate fuzzy polynomials for the 

one that best fits some data, generated by a multi-variate fuzzy function.

Recently, Hong et al. (2001a, 2001b, 2001c) presented a new method to evaluate 

fuzzy linear and non-linear regression models distance where both input data and 

output data are fuzzy numbers, using shape preserving fuzzy arithmetic operations.

Since TW  -based fuzzy arithmetic operations preserves the shape of fuzzy numbers under addition and multiplication, it simplifies the computation of fuzzy 

arithmetic operations. 

In this paper, we prove that multi-variate fuzzy polynomials are universal 

approximators for multi-variate fuzzy functions which are the extension principle 

extension of continuous real-valued function under TW-based fuzzy arithmetic operations for a distance measure that Buckley et al. (1999) used. We also 

consider fuzzy quadratic polynomial regression for least-square fitting using the 

distance measure that Buckley et al. (1999) used. This problem is mixed nonlinear 

programming problem. We derive the solution using general non-linear 

programming problem.

2. Preliminaries

A fuzzy number is a convex subset of the real line R  with a normalized 

membership function. A triangular fuzzy number a  denoted by (a,α,β)  is defined 

as

a ( t) =

ꀊ

ꀖ

ꀈ
︳︳

︳︳

1-
|a- t|
α

if  a-α≤t≤a,

1-
|a- t|
β

if  a≤t≤a+β,

0 otherwise,

   

where a∈R  is the center and α> 0  is the left spread, β> 0  is the right spread 

of a.

If α=β, then the triangular fuzzy number is called a symmetric triangular 

fuzzy number and denoted by (a,α).

A L-R  fuzzy number a=(a,α,β) LR  is a function  from the reals into the 

interval [0,1]  satisfying
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a ( t) =

ꀊ

ꀖ

ꀈ
︳︳

︳︳

R( t-aβ ) for  a≤t≤a+β,
L( a- tα ) for  a-α≤t≤a,
0 else,

where L  and R  are non-decreasing and continuous functions from [0,1]  to 

[0,1]  satisfying L(0)=R(0)=1  and L(1)=R(1)=0 .  If L=R  and α=β, 

then the symmetric L-L  fuzzy number is denoted (a,α) L.

An α-cut of a fuzzy number A, written as [A]α, is defined as 

{x |A( x )≥α}, for 0≤α≤1. 

Now, we may present the (restricted) fuzzy regression problem. The extension 

to Xi  a fuzzy vector, for the linear case, is straightforward. So, for now we 

consider Xi  a single fuzzy number.

Let ℱ  denote all fuzzy numbers and let ℱLR
 be L-R  fuzzy numbers. A 

function mapping  ℱLR
 into ℱ  will be written as F(X ; K 1,…, Kn)  where X  

is the variable in ℱLR
 and the K  are parameters (constants) also in ℱLR

. For 

example, F(X ; K 1, K 2 )= K 2 X+ K 1, a fuzzy linear function, is one of these 

functions.

Let Ω  be some fixed collection of F(X ; K 1,…, Kn )  mapping ℱLR
 into ℱ. 

For example, Ω  could be all fuzzy linear functions, or all fuzzy polynomial 

functions of degree less than four.

Let ( Xi, Zi), 1≤i≤p, be some data Xi  in ℱLR
 and Zi  in ℱ. The 

fuzzy regression problem is to find F  in Ω  that "best" explains this data. For 

any F  in Ω  let Yi= F(X ; K 1,…, Kn), 1≤i≤p, and let D  be a metric on the 

collection of fuzzy numbers. We measure "best" through the error function.

                              E(F)=
1
p ∑

p

i=1
D 2( Zi, Yi),           (1)  

where Yi= F(X ; K 1,…, Kn). The (restricted) fuzzy regression problem based 

on Ω  is to find F
*  in Ω  so that

                               inf F∈Ω(E(F))=E(F
*).                    (2)

If the problem in Eq. (2) has a solution F
*  we will say that F

*  best explains 

the data with respect to Ω.

The Section 4 discusses polynomial types of fuzzy functions we will place into 

Ω.

The metric we will use is (Buckely, Feuring and Hayashi(1999)):
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                          D(M,N )= supαH( [M] α,[N] α),                (3) 

where H  is the Hausdorff distance between nonempty subsets of the reals and 

N, M  are two fuzzy numbers. Since α-cuts of fuzzy numbers are always closed, 

bounded intervals, we get

           D(M,N ) = supα max {|m 1 (α)-n 1 (α) |, |m 2 (α)-n 2 (α) | }       (4)

where [M] α= [m 1 (α), m 2 (α)]  and [ N] α= [n 1 (α), n 2 (α)], for all α.

It is noted that for A 1=(a 1, α 1,β1) LR, A 2=(a 2, α 2,β2) LR  we have

      

D( A 1, A 2 )= max {|a 1-a 2|, |(a 1-α1)-(a 2-α2)|, |(a 1+β1)-(a 2+β2)| }.   (5)

For simlicity, we are only considering L-R  fuzzy numbers in ℱLR
.

A binary operation T  on the unit interval is said to be triangular norm( t-norm 

for short) iff T  is associative, commutative, non-decreasing and T(x,1)= x  for 

each x∈[0,1].  Moreover, every t-norm satisfies the following inequality,

TW(a,b)≤T(a,b)≤min (a,b)=TM(a,b)

where,

TW(a,b)= {
a if  b=1,
b if  a=1,
0 otherwise.

The crucial importance of TM(a,b), a⋅b, max(0,a+b-1)  and TW(a,b)  is 

emphasized from a mathematical point of view in Ling (1965) among others.

The usual arithmetical operations of real numbers can be extended to the 

arithmetical operations on fuzzy numbers by means of extension principle of Zadeh 

(1965) based on a triangular norm T. Let A, B  be fuzzy numbers of reals line 

R.  The fuzzy number arithmetic operations are summarized as follows:

 Fuzzy number addition ⊕  :

                   (A⊕B)(z)= sup x+ y= zT( A ( x ), B ( y)),               (6)

 Fuzzy number multiplication⊗  :

(A⊗B)(z)= sup x⋅y= zT( A ( x ), B ( y)).

The addition(subtraction) rule for L-R  fuzzy numbers is well known in the 

case of TM-based addition and then the resulting sum is again on L-R  fuzzy 

numbers, i.e., the shape is preserved. Diamond (1988) used TM-based addition in 

his paper. It is also known that TW-based addition preserves the shape of L-R  

fuzzy numbers ( Koles arov a(1995), Mesiar(1997)). In practical computation, it is 

natural to require the preserving the shape of fuzzy numbers during the 
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multiplication. Of course, we know that TM-based multiplication does not preserve 

the shape of L-R  fuzzy numbers. But it is known by Hong and Do (1997) that 

TW  induces shape preserving multiplication of L-R  fuzzy numbers. Recently, 

Hong (2000) showed that TW  is the unique t-norm which induces shape 

preserving in multiplication of L-R  fuzzy numbers.

Hong et al. (2001a, 2001b, 2001c) used TW  -based fuzzy arithmetic operations. 

Let Ai=(a i,α i)L  and X ij=(x ij,γ ij)L, i=1,2,…,n, j=1,2,…,p. Then the 

membership function of Yi=(A⊗ X i1 )⊕( A 2⊗ X i2 )⊕…⊕( Ap⊗ X ip)  is 

given by

                    Yi=( ∑
p

j=1
a ix ij, max 1≤j≤p(|a i |γ ij,|x ij|α i))L.            (7)

Let Bi, i=1,2,…,n  be fuzzy number. Define ∑
n

i=1
Bi= B 1⊕…⊕ Bn. A 

possibilistic quadratic polynomial systems whose parameter is defined as 

                      Y= ∑
p

j=1
( Aj⊗ Xj)⊕ ∑

1≤l≤k≤p
( A l, k⊗ Xl⊗ Xk )      (8)

where A= { Aj, A l,k |1≤j≤p,1≤l≤k≤p }  is a fuzzy parameters and 

X= ( X 1,…, Xp )  is a fuzzy vector. Using TW-based arithmetic operations, we 

have the following lemma by (7).

Proposition 2.1 Let Aj=(a j,α j)L, A l, k=(a l,k,α l,k)L  and Xj=(x j,γ j).  

Then the possibilistic quadratic polynomial function with fuzzy parameter 

Aj, A l, k
 and fuzzy variables Xj, j=1,2,…,p, 1≤l≤k≤p  is given by

  Y =( ∑
p

j=1
ajx j+ ∑

1≤l≤k≤p
a l,kx lxk,

max {max 1≤j≤p(|aj |γ j,α j|x j|),max 1≤l≤k≤p(α l,k |x l||xk|,|a l,k|γ l|xk|,|a l,k||x l|γ k) })L.

  (9)

3. Universal approximator

A function mapping ℱ
n
LR
 into ℱ  will be written F(X;K)  where 

X=( X 1,…, Xn ), K=( K 1,…, Kn),  the variables Kj  are also 

parameters (constants) in ℱLR
. From now on, to simplify the discussion n  will 

be 2  so that all our multi-variate fuzzy functions have only two independent 

variables.

We obtain such an F  via the extension principle. Let f(x 1,x 2 ; k 1,…,km) : [a,b]×
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[c,d]→R  where the parameters k i  belong to (closed, bounded) intervals I i, 

1≤i≤m. Although the k i  are constants we will consider f  having m+2  

variables so it is a continuous mapping from [a, b]×[c,d]×Π
n
i= 1 I i  into R.  

Now we extend f, using the extension principle to  F( X 1, X 2 ; K 1,…, Km)  

for Xi  in ℱLR
, X 1  in [a,b], X 2  in [c,d]  and all the Kj  in F LR

 with 

Kj  in I j, 1≤j≤m. Let Z=F ( X 1, X 2 ; K 1,…, Km)  with Z  in ℱ.

We will use the notation p θ(x 1,x 2;k 1,…,,km)  for a polynomial in variables 

x 1, x 2, k 1,…,km  of degree d 1  in x 1, d 2  in x 2, d 3  in k 1,…,dm+2  in km  with 

θ=(d 1,d 2;d 3,…,dm+2). Given ε, there is a p θ  so that (Taylor(1965))

              | f(x 1,x 2 ; k 1,…,km)-p θ(x 1,x 2 ; k 1,…,km) | <
ε

(m+2)
,      (10)

for all x 1∈[a,b], x 2∈[c,d], and k j∈I j, 1≤j≤m.

Now we use the extension principle to extend p θ  to 

P θ ( X 1, X 2 ; K 1,…, Km )=Y  for X 1∈[a,b], X 2∈[c,d], the Kj∈I j  and 

X 1, X 2, K 1, K 2,…, Km  all in F LR
, Y  in F. 

If T=TW, then by a result of Fuller and Koresztfalvi(1991)

        

Z [α] = {F( X 1, X 2 ; K 1,…, Km)≥α}

= f( [ X 1 ]
α
,[ X 2 ]

1
;[ K 1 ]

1
,…,[ Km]

1
)

                                            

  ∪f( [ X 1 ]
1,[ X 2 ]

α;[ K 1 ]
1,…,[ Km]

1)
     …
  ∪f( [ X 1 ]

1,[ X 2 ]
1;[ K 1 ]

1,…,[ Km - 1]
1,[ Km]

α)

and similarly

        

Y [α] = {P θ( X 1, X 2 ; K 1,…, Km)≥α}

= p θ( [ X 1 ]
α,[ X 2 ]

1;[ K 1 ]
1,…,[ Km]

1)

  ∪p θ( [ X 1 ]
1
,[ X 2 ]

α
;[ K 1 ]

1
,…,[ Km]

1
)

     …
  ∪p θ( [ X 1 ]

1
,[ X 2 ]

1
;[ K 1 ]

1
,…,[ Km - 1]

1
,[ Km]

α
).

Here, we note that
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|min [ Z]α- min [Y]α |
  ≤|min f( [ X 1 ]

α
,[ X 2 ]

1
;[ K 1 ]

1
,…,[ Km ]

1
)

  -minp θ( [ X 1 ]
α,[ X 2 ]

1;[ K 1 ]
1,…,[ Km]

1)|

  +|min f( [ X 1 ]
1,[ X 2 ]

α;[ K 1 ]
1,…,[ Km ]

1)

  -minp θ( [ X 1 ]
1
,[ X 2 ]

α
;[ K 1 ]

1
,…,[ Km]

1
)|

   ⋯

  +|min f( [ X 1 ]
1,[ X 2 ]

1;[ K 1 ]
1,…,[ Km - 1]

1,[ Km]
α)

                   -minp θ( [ X 1 ]
1
,[ X 2 ]

1
;[ K 1 ]

1
,…,[ Km - 1]

1
,[ Km]

α
)|

and

|max [ Z]α- max [Y]α |
  ≤|max f( [ X 1 ]

α,[ X 2 ]
1;[ K 1 ]

1,…,[ Km ]
1)

  -maxp θ( [ X 1 ]
α,[ X 2 ]

1;[ K 1 ]
1,…,[ Km ]

1)|

  +|max f( [ X 1 ]
1
,[ X 2 ]

α
;[ K 1 ]

1
,…,[ Km]

1
)

  -maxp θ( [ X 1 ]
1,[ X 2 ]

α;[ K 1 ]
1,…,[ Km ]

1)|
   ⋯

  +|max f( [ X 1 ]
1
,[ X 2 ]

1
;[ K 1 ]

1
,…,[ Km - 1]

1
,[ Km]

α
)

                   -maxp θ( [ X 1 ]
1,[ X 2 ]

1;[ K 1 ]
1,…,[ Km - 1]

1,[ Km]
α)|.

Now, from equation (10), we easily prove that (same ε  as in equation (10))Theorem 1. D(F( X 1. X 2 ; K 1,…, Km), P θ ( X 1. X 2 ; K 1,…, Km )) < ε, 

for all X 1∈[a,b], X 2∈[c,d]  and all Kj∈I j, 1≤j≤m.

This means that multi-variate fuzzy polynomials are universal approximators. 

4. Fuzzy polynomial regression 

In this section, we consider fuzzy quadratic polynomial regression model for 

least-square fitting with respect to the D-metric.

Let ℱ LR(R)  be the set of all L-R  fuzzy numbers. In order to solve fuzzy 

least squares optimization problem in  ℱ LR(R), we use the metric D  which is 

defined as distance as follows:

D( A 1, A 2 )
2= max ( (a 1-a 2)

2, ( (a 1-α1)-(a 2-α2))
2, ( (a 1+β1)-(a 2+β2))

2
)  (11)

where A 1 = ( a1
,α1,β1) LR, A 2=(a 2,α2,β2) LR.

In this section, we consider the following model:

             ( P): Y= ∑
p

j=1
( Aj⊗ Xj)⊕ ∑

1≤l≤k≤p
( A l, k⊗ Xl⊗ Xk )         (12)

where Aj, A l,k, Xj∈ ℱ LR(R), 1≤j≤p, 1≤l≤k≤p.
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We assume, throughout this section, that Aj, A ij, X, Y∈ ℱ LR(R)  are 

symmetric L-R  fuzzy numbers for computational simplicity.  Suppose that 

observations consist of data pairs ( Xi, Yi), i=1,2,…,n,  where 

X i=( X i1,…, X ip ), X ij=(x ij,γ ij)L,   j=1,…,p,  Yi=(y i,η i)L  . Each is 

to be fitted to the data in the sense of best fit with respect to the D LR
-metric. 

In association with the model (P), consider the least-squares optimization problem

     ( D) : Minimize  nE(F)= r( a,α)= ∑
n

i=1
D 2( ∑

p

j=1
( A ij⊗ Xij )

⊕ ∑
1≤l≤k≤p

( A l, k⊗ Xil⊗ Xik), Yi )

    (13)

Let Aj=(a j,α j)L, and A l, k=(a l,k,α l,k)L, then by (9)

nE(f)= ∑
n

i=1
D2( ( ∑

p

j=1
ajx ij+ ∑

1≤l≤k≤p
a l,kx ilx ik,

max {max 1≤j≤p(|aj |γ ij,α j|x ij|),

max 1≤l≤k≤p(α l,k|x il||x ik|,|a l,k|γ il|x ik|,|a l,k||x il|γ ik) })L, Yi )

= max ∑
n

i=1{ [ ∑
p

j=1
ajx ij+ ∑

1≤l≤k≤p
a l,kx ilx ik-

max {max 1≤j≤p(|aj |γ ij,α j|x ij|),

max 1≤l≤k≤p(α l,k|x il||x ik|,|a l,k|γ il|x ik|,|a l,k||x il|γ ik) }-(y i-η i)]
2,

[ ∑
p

j=1
ajx ij+ ∑

1≤l≤k≤p
a l,kx ilx ik+max {max 1≤j≤p(|aj |γ ij,α j|x ij|),

max 1≤l≤k≤p(α l,k|x l||xk|,|a l,k|γ il|x ik,|a l,k||x il|γ ik) }-(y i+η i)]
2,

[ ∑
p

j=1
ajx ij+ ∑

1≤l≤k≤p
a l,kx ilx ik-y i]

2}.
This problem can be computed by mixed QP problem as follows:

Let M={( j, l,k)|1≤j≤p,1≤l≤k≤p }, and define

A( i,( j,l,k),Hr) = {( (a 1,α1),…,(ap,α p),(a 1,1,α 1,1),…,(a p,p,α p,p))∈(R
2
)
p( p+3)
2
|

max (|aj|γ ij,|x ij|α j,α l,k|x il||x ik|,|a l,k|γ il|x ik|,|a l,k||x il|γ ik)
=Hr}

where H 1=a jγ ij, aj≥0, H 2=-aj γ ij, a j<0, H 3= |x ij|α j, H 4=α l,k|x il||x ik|,

H5=a l,kγ il   |x ik|, a l,k≥0,  H6=-a l,kγ il|x ik|, a l,k< 0,  

H 7=a l,k|x il|γ ik, a l,k≥0, H8=-a l,k |x il|γ ik, a l,k< 0.

Let f  and g  be functions such that

f : {1,2,…,n }=>M,
g : M=> {H 1,H 2,…,H 8}.
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On ∩
n

i=1
A(i,f( i),g( f( i))), (13) is an QP problem and

         Min r( a ,α)= Min f,g Min
( a ,α)∈ ∩

n

i=1
A(i,f( i),g(f( i)))

r( a ,α).

For example, let n=2, p=2  in (13). Then the model can be written as

Yi * =( A
*
1⊗ X i1)⊕( A

*
2⊗ X i1)

⊕( A *
1,1⊗ X i1⊗ X i2 )⊕( A

*
1,2⊗ X i1⊗ X i2 )⊕( A

*
2,2⊗ X i2⊗ X i2 )

and M={(1,1,1), (1,1,2),(1,2,2),(2,1,1),(2,1,2),(2,2,2) }. Let f : {1,2 }→M  

be such that f(1)=(1,1,2), f(2)= (2,1,1)  and let g :M→ {H 1,H 1,…,H 8}  be such 

that g( f(1))= g( (1,1,2))=H 5, g(f(2))=g ( (2,1,1))=H 3  Then, on A(1,f(1),g(f(1))  

∩A(2,f(2),  g(f(2)), (13) is written as

                                                              

Minimize  r( a,α) = max { [ ( ∑
2

j=1
ajx 1j+ ∑

1≤l≤k≤2
a l,kx 1lx 1k)-a 1,2γ 11|x 12|-(y 1-η1)]

2,     

                         [ ( ∑
2

j=1
ajx 1j+ ∑

1≤l≤k≤2
a l,kx 1lx 1k)+a 1,2γ 11|x 12|-(y 1+η1)]

2,

                       [ ( ∑
2

j=1
ajx 1j+ ∑

1≤l≤k≤2
a l,kx 1lx 1k)-y 1)]

2}  

                      

+max { [ ( ∑
2

j=1
ajx 2j+ ∑

1≤l≤k≤2
a l,kx 2lx 2k)-|x 22 |α2-(y 2-η2)]

2

[ ( ∑
2

j=1
ajx 2j+ ∑

1≤l≤k≤2
a l,kx 2lx 2k)+|x 22|α2-(y 2+η2)]

2,

[ ( ∑
2

j=1
ajx 2j+ ∑

1≤l≤k≤2
a l,kx 2lx 2k)-y 2)]

2},
  

 

|a 1|γ 11≤a 1,2γ 11|x 12|, |x 11|α1≤a 1,2γ 11|x 12|,
α 1,2|x 11||x 12|≤a 1,2γ 11|x 12|,
a 1,2≥0, a 1,2|x 11|γ 12≤a 1,2γ 11|x 12|,
|a 2|γ 22≤|x 22|α2, α 1,1|x 21||x 21|≤|x 22|α2, |a 1,1||x 21|γ 21≤|x 22|α2

which is a mixed QP problem with respect to a j, α j, 

j=1,2, a l,k, α l,k, 1≤l≤k≤2.

Now we consider all such functions f  and g  and take minimum with regard to 

them.

Then we get the desired solution.

Example.  We consider the same artificial data shown in Table 1 in Hong and 

Do (2001a).
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 Table 1. Fuzzy Input-Output Data of Nonlinear Type

Sample 

 number i X i=(x i,γ i) Yi=(y i,η i)

Sample 

number i X i=(x i,γ i) Yi=(y i,η i)

1 (1.0, 0.5) (6.3, 2.0) 11 (6.5, 1.5) (39.9, 3.0)

2 (1.5, 0.5) (11.1, 1.5) 12 (7.0, 2.5) (42.0, 1.5) 

3 (2.0, 1.0) (20.0, 2.0) 13 (8.0, 2.0) (46.1, 2.0)

4 (3.0, 1.0) (24.0, 1.5) 14 (9.0, 3.0) (53.1, 4.0)

5 (4.0, 1.0) (26.1, 1.0) 15 (10.0, 2.0) (52.0, 5.0)

6 (4.5, 0.5) (30.0, 3.0) 16 (11.0, 2.0) (52.5, 3.5)

7 (5.0, 1.5) (33.8, 2.5) 17 (12.0, 1.0) (48.0, 3.0)

8 (5.5, 1.0) (34.0, 3.0) 18 (13.0, 1.0) (42.8, 2.5)

9 (6.0, 2.0) (38.1, 2.5) 19 (14.0, 1.0) (27.8, 2.0)

10 (15.0, 1.0) (21.9, 1.5) 

Noting that Yi=(y i,η i)

A 0⊕( A 1⊗ Xi)⊕( A 2⊗ X
2
i )= (a 0+a 1x i+a 2x

2
i, max(α0,|a 1|γ i,α1x i,|a 2|x iγ i,α2x

2
i ))

we minimize

              

r( a,α)= ∑
19

i=1
max{ ( [ (a 0+a 1x i+a 2x

2
i )-

max(α0,|a 1|γ i,α1x i,|a 2|x iγ i,α2x
2
i )-(y i-η i)]

2,

[ (a 0+a 1x i+a 2x
2
i )+

max(α0,|a 1|γ i,α1x i,|a 2|x iγ i,α2x
2
i )-(y i+η i)]

2,

[ (a 0+a 1x i+a 2x
2
i )-y i]

2)}.

Then the solution is

A *
0
 =(15.9, 0.0∼0.05), A *

1
 = (3.19, 0.0∼0.26 ), A *

2
 =(-0.13, 0.0∼0.01) with 

r( a * ,α*)=(5111.67729). 

5. Conclusion 

We proved that multivariate fuzzy polynomials are universal approximators for 

multivariate fuzzy functions which are the extension principle of continuous real 

valued multivariate functions under TW-based fuzzy arithmetic operations.

We also suggested fuzzy quadratic polynomial regression for least-square fitting 

using the distance measure that Buckley et al.(1999) used under shape preserving 

operations. We use general mixed nonlinear programming problem to derive the 

optimal solutions. An artificial example is given. 
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