DOI QR코드

DOI QR Code

On comonotonically additive interval-valued functionals and interval-valued Choquet integrals(II)

보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(II)

  • Published : 2004.02.01

Abstract

In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Schmeidler[14] and Narukawa[12], and prove some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space, cf.[9,10,11,13].

이 논문에서는 Schmeidler[14]와 Narukawa[12]에 나오는 보단조 가법 실수치 범함수 개념의 일반화인 보단조 가법 구간치 범함수를 정의하고 그들의 성질을 연구한다. 또한 보단조 가법 구간치 범함수와 구간치 쇼케이적분이 적당한 함수공간 상에서 서로간의 관계를 조사한다. 수의 값을 갖는 함수들의 쇼케이적분을 생각하고자 한다. 이러한 구간 수의 값을 갖는 함수들의 성질들을 조사한다.

Keywords

References

  1. J. Aubin, Set-valued analysis, 1990, Birkauser Boston.
  2. R. J. Aumann, Integrals of set-valued functions, J. Math. Appl. vol. 12 pp.1-12, 1965.
  3. L. M. Campos and M. J. Bolauos, Characterization and comparision of Sugeno and Choquet integrals, Fuzzy Sets and Systems vol. 52 pp. 61-67, 1992. https://doi.org/10.1016/0165-0114(92)90037-5
  4. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multi. Analysis vol.7 pp. 149-182, 1977. https://doi.org/10.1016/0047-259X(77)90037-9
  5. L. C. Jang, B. M. Kil, Y. K. Kim and J. S. Kwon, Some properties of Choquet integrals of set -valued functions, Fuzzy Sets and Systems vol.91 pp.95-98, 1997. https://doi.org/10.1016/S0165-0114(96)00124-8
  6. L.C. Jang and J.S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems vol.112 pp.233-239, 2000. https://doi.org/10.1016/S0165-0114(98)00184-5
  7. L.C. Jang and T. Kim, On set-valued Choquet intgerals and convergence theorems, Advanced Studies and Contemporary Mathematics vol. 6, no. 1 pp. 63-76, 2003.
  8. L.C. Jang and T. Kim, On set-valued Choquet intgerals and convergence theorems (II), J. of Fuzzy Logic and Intelligent Systems vol.12, no.4 pp.323-327, 2002. https://doi.org/10.5391/JKIIS.2002.12.4.323
  9. T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems vol. 29 pp. 201-227, 1989. https://doi.org/10.1016/0165-0114(89)90194-2
  10. T. Murofushi and M. Sugeno, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. vol. 159 pp. 532-549, 1991. https://doi.org/10.1016/0022-247X(91)90213-J
  11. Y. Narukawa, T.Murofushi and M. Sugeno, Regular fuzzy measure and representation of comonotonically additive functional, Fuzzy Sets and Systems vol.112 pp.177-186, 2000. https://doi.org/10.1016/S0165-0114(98)00138-9
  12. Y. Narukawa, T. Murofushi and M. Sugeno, Extension and representation of comonotonically additive functionals, Fuzzy Sets and Systems, vol. 121, pp. 217-226, 2001. https://doi.org/10.1016/S0165-0114(00)00031-2
  13. S. Ovchinnikov and A. Dukhovny, On order invariant aggregation functionals, J. of Mathematical Psychology, vol. 46, pp. 12-18, 2002. https://doi.org/10.1006/jmps.2001.1365
  14. D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc., vol. 97, pp. 253-261, 1986.
  15. M. Sugeno, Y. Narukawa and T. Murofushi, Choquet integral and fuzzy measures on locally compact space, Fuzzy Sets and Systems, vol. 99, pp. 205 -211, 1998. https://doi.org/10.1016/S0165-0114(97)00028-6
  16. Y. Syau, On convex and concave fuzzy mappings, Fuzzy Sets and Systems , vol. 103, pp. 163-168, 1999. https://doi.org/10.1016/S0165-0114(97)00210-8
  17. D. Zhang, On measurability of fuzzy number -valued functions, Fuzzy Sets and Systems, vol.120,pp.505-509, 2001. https://doi.org/10.1016/S0165-0114(99)00061-5

Cited by

  1. A note on Jensen type inequality for Choquet integrals vol.9, pp.2, 2009, https://doi.org/10.5391/IJFIS.2009.9.2.071